Detecting VoIP Traffic Based on Human Conversation Patterns

Chen-Chi Wu¹, Kuan-Ta Chen²
Yu-Chun Chang¹, Chin-Laung Lei¹

¹Department of Electrical Engineering, National Taiwan University
²Institute of Information Science, Academia Sinica
Outline

- Motivation
- Methodology
- Performance evaluation
- Summary
Motivation

- VoIP is becoming popular because of
 - Low call cost
 - High voice quality
- Skype, a popular VoIP application
 - over 10,000,000 concurrent users
- Accurately identifying VoIP flows from the network traffic is required
 - Traffic analysis
 - Traffic management
Motivation

- Challenges of VoIP flows identification
 - Various signaling protocols: SIP, H.323, various proprietary protocols
 - Non-standard port numbers
 - Packet payload encryption

- The interaction of human conversation is unique
 result in a specific characteristic of VoIP traffic
4-State Traffic Pattern

- Infer the on/off (talking/silence) pattern by the level of the packet rate during a short period.
- We model a two-way conversation by a process of four states:
 - State A: a period that speaker A is talking and B is silent.
 - State B: B is talking and A is silent.
 - State D: both A and B are talking.
 - State M: mutual silence.
Intuition behind Our Approach

- The 4-state traffic pattern of VoIP traffic is unique compared to that of other network applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Traffic Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td></td>
</tr>
<tr>
<td>P2P (BitTorrent)</td>
<td></td>
</tr>
<tr>
<td>Online game (WoW)</td>
<td></td>
</tr>
<tr>
<td>TELNET</td>
<td></td>
</tr>
<tr>
<td>VoIP (Skype)</td>
<td></td>
</tr>
</tbody>
</table>

IPTComm 2008
Methodology

- Detect VoIP flows based on the unique human speech conversation patterns embedded in voice traffic
- Derive features (attributes) from the conversation patterns
- Adopt naïve Bayesian classifier, a supervised machine learning tool, to divide traffic into the VoIP and non-VoIP class
 - The class label of each training data is required
Methodology Overview

Training phase

Labeled training flows (VoIP or non-VoIP)

- Extract 4-state traffic patterns and derive features

- Flow vectors

- Learn classifier parameters

Identification phase

Incoming flows (unknown class)

- Extract conversation patterns and derive features

- Flow vectors

- Classify

- Flow labels (VoIP or non-VoIP)

Naïve Bayesian Classifier

IPTComm 2008
Naïve Bayesian Classifier

Naïve Bayesian classifier is based on the Bayes’ theorem

\[P(A | B) = \frac{P(B | A)P(A)}{P(B)} \]

- Each flow is represented by a vector \(X = (x_1, x_2, \ldots, x_n) \), depicting \(n \) features \(A_1, A_2, \ldots, A_n \)

- Suppose there are \(m \) classes, \(C_1, C_2, \ldots, C_m \)
Naïve Bayesian Classifier

- Given a flow vector X, the classifier predicts the flow belongs to class C_i iff
 \[P(C_i \mid X) > P(C_j \mid X) \quad \text{for} \quad 1 \leq j \leq m, j \neq i \]

- By Bayes’ theorem
 \[P(C_i \mid X) = \frac{P(X \mid C_i)P(C_i)}{P(X)} \]

 $P(X)$ is constant and $P(C_i)$ is the prior probability, thus the task is to maximize
 \[P(X \mid C_i) \]
Naïve Bayesian Classifier

- The *naïve* assumption is that the values of the features are *conditionally independent* of one another

\[
P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)
\]

\[
= P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times \cdots \times P(x_n \mid C_i)
\]

- \(P(x_1 \mid C_i), P(x_2 \mid C_i), \ldots, P(x_n \mid C_i)\) can be easily estimated from the training data
How to derive features from the 4-state traffic pattern?

- Use a Markov chain to model the VoIP traffic pattern
- Statistics of traffic patterns
Markov Chain

- Build a Markov chain model based on a set of known VoIP traffic patterns
- Derive a feature – likelihood value

Transition probabilities of the Markov chain

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.9022</td>
<td>0.0028</td>
<td>0.0380</td>
<td>0.0571</td>
</tr>
<tr>
<td>B</td>
<td>0.0029</td>
<td>0.9030</td>
<td>0.0391</td>
<td>0.0550</td>
</tr>
<tr>
<td>D</td>
<td>0.0607</td>
<td>0.0592</td>
<td>0.8763</td>
<td>0.0038</td>
</tr>
<tr>
<td>M</td>
<td>0.0465</td>
<td>0.0439</td>
<td>0.0019</td>
<td>0.9078</td>
</tr>
</tbody>
</table>

4-state Markov chain
Likelihood of Traffic Patterns

- Given a traffic pattern with a state sequence S_1, S_2, \ldots, S_n, where $S_i \in \{A, B, D, M\}$
- Compute the **log-likelihood value** as
 \[\log(P_{1,2} \times P_{2,3} \times \cdots \times P_{(n-1)n}) \]
 $P_{i,j}$: the transition probability from S_i to S_j
- Traffic flows may vary in length, thus define the **normalized log-likelihood value** as
 \[\frac{\log(P_{1,2} \times P_{2,3} \times \cdots \times P_{(n-1)n})}{N} \]
 N: the length of the sequence
Likelihood of Traffic Patterns

- The Markov chain represents typical human conversation
- VoIP flows => large log-likelihood value
- Non-VoIP flows => low log-likelihood value
- Exhibit non-human-like behavior: non-interactive, independent, unidirectional
Statistics of Traffic Patterns

- Mean of the period that party A (or B) is ON (talking) each time (also compute the standard deviation)
 - Bidirectional behavior

- Mean and standard deviation of the sojourn time in states A, B, D, M, respectively
 - Interactive behavior

- State alternation frequency
 - Fragmented and disordered level of traffic pattern
Statistics of Traffic Patterns

- State alternation frequency
 - Alternation frequency between different states

 E.g., \(\frac{6\text{ alternations between different states}}{20\text{ sec.}} \)

IPTComm 2008
Feature Summary

<table>
<thead>
<tr>
<th>Feature set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized log-likelihood value based on the Markov chain</td>
</tr>
<tr>
<td>Speech period of party A or B (mean, standard deviation)</td>
</tr>
<tr>
<td>Sojourn time in each states* (mean, standard deviation)</td>
</tr>
<tr>
<td>Ratio of sojourn time in each states*</td>
</tr>
<tr>
<td>Alternation rate between states*</td>
</tr>
<tr>
<td>states A, B, D, M</td>
</tr>
</tbody>
</table>
Methodology

Training phase

- Labeled training flows (VoIP or non-VoIP)
 - Extract 4-state traffic patterns and derive features
 - Learn classifier parameters
 - Flow vectors

Identification phase

- Incoming flows (unknown class)
 - Extract conversation patterns and derive features
 - Flow vectors
 - Flow labels (VoIP or non-VoIP)
 - Classify
 - Naïve Bayesian Classifier
Trace Collection

- We collected network traffic from 5 categories of applications
 - VoIP (Skype), TELNET, Web, P2P (BitTorrent), online game (World of Warcraft)

<table>
<thead>
<tr>
<th>Category</th>
<th># Connections</th>
<th>Duration</th>
<th># Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP</td>
<td>462</td>
<td>2,388 (min)</td>
<td>4,728,240</td>
<td>4,318 (MB)</td>
</tr>
<tr>
<td>TELNET</td>
<td>2,008</td>
<td>4,729 (min)</td>
<td>10,559,261</td>
<td>7,331 (MB)</td>
</tr>
<tr>
<td>Web</td>
<td>1,406</td>
<td>1,537 (min)</td>
<td>2,528,359</td>
<td>680 (MB)</td>
</tr>
<tr>
<td>P2P</td>
<td>15,845</td>
<td>3,334 (min)</td>
<td>29,220,870</td>
<td>30,500 (MB)</td>
</tr>
<tr>
<td>Online game</td>
<td>2,224</td>
<td>120 (min)</td>
<td>28,264,360</td>
<td>59,097 (MB)</td>
</tr>
</tbody>
</table>
Performance Evaluation

- Detect VoIP flows as early as possible
 - Detection time is a major concern
 - 95% accuracy with 4-second detection time
 - 97% accuracy with 11-second detection time
Performance Evaluation

- **Goal**: detect VoIP flows
 - VoIP flows positives, non-VoIP flows negatives
- **True positive rate**
 \[
 \text{TPR} = \frac{\text{The number of VoIP flows correctly identified}}{\text{The number of total VoIP flows}}
 \]
- **False positive rate**
 \[
 \text{FPR} = \frac{\text{The number of non-VoIP flows correctly identified}}{\text{The number of total non-VoIP flows}}
 \]
- **True negative rate**
Performance Evaluation

- 97% TPR with a detection time longer than 3 sec.
- Flows of World of Warcraft tend to be mis-identified
 - Achieve 90% TNR with a detection time longer than 10 sec.
ROC Curves

- ROC (Receiver Operating Characteristic)
Summary

- Propose a VoIP flow identification scheme based on human conversation patterns

- Our scheme yields an identification accuracy 95% within 4 sec. of the detection time, and 97% within 11 sec.

- High accuracy in short detection time
Thanks for your attention