A Collusion-Resistant Automation Scheme for Social Moderation Systems

Jing-Kai Lou1,2, Kuan-Ta Chen1, Chin-Laung Lei2

1Institute of Information Science, Academia Sinica
2Department of Electrical Engineering, National Taiwan University
The Rise of User-Generated Content

- eMarketer projects that the number of US UGC creators will rise to **108 million** in 2012, from **77 million** in 2007.

![User-Generated Content Creators Chart](chart.png)

Note: individuals who create and share any of the following online at least once per month-video, audio, photos, personal blogs, personal Web sites, online bulletin board postings, personal profiles in social networks or virtual worlds and/or customer reviews

Source: eMarketer, April 2008
Inappropriate UGC

- While most UGC creators behave responsibly, a minority of creators may upload inappropriate content, such like
 - pictures that violate copyright laws
 - splatter movies
 - ...
- Content censorship is essential for Web 2.0 services

- One Solution:
 - hiring lots of official moderators
 - But, such high labor cost is a great burden to the service provider

- Another Solution: Social moderation has been proposed to solve the content censorship problem
Social Moderation System

- A user-assist moderation
- Every user is a reviewer!

You report/accuse while browsing

Official moderators inspect and evaluate what your report
Is Social Moderation good enough?

• Advantages of social moderation system:
 1. Fewer official moderators
 2. Detecting inappropriate content quickly

• BUT, the number of the reports is still large.
 • Even 1% uploading photos in Flickr are problematic, there are about 43,200 reports each day.

• Can we help?
Social Moderation Automation

- This is our motivation for proposing social moderation automation, which automatically summarizes the reports submitted by users.

- **A preprocess:**
 For eliminating manual inspection by official moderators as much as possible.
There is an intuitive way...

- **Count-based Scheme** identifies **misbehaving users** by considering the number of accusations (reports).

These photos are accused no more than \((N = 20)\) users

These photos are accused more than \((N = 20)\) users
However, there are many colluders...
Not All Users Are Trustable

- While most users report responsibly, colluders report fake results to gain some benefits.
- Counted-based scheme may misidentify!
Research Question

• CAN we automatically infers which accusations (reports) are \textcolor{red}{fair} or \textcolor{red}{malicious}?

• Need a better automation scheme to deal with collusion attacks
Our Scheme

• **Community-based scheme** analyzes the *accusation relations* between the accusing users and accused users.

• Based on the derived information, the scheme infers whether the accusations are fair or malicious; that is, it distinguishes users that genuinely misbehave from victims of collusion attacks.
Our Contributions

• The evaluation results show that our scheme
 – Achieves accuracy rate higher than 90%
 – Prevents at least 90% victims from collusion attacks
Accusation Relation

• **Accusation Relation**\((R)\): a subset of \(A \times A\),
 \(A := \{\text{reporters, UGC creators}\}\)
• E.g. 5 users in this system, namely U1, U2, U3, U4, U5
• **Accusation Relation Matrix**\((M)\):

 - U1 accuses (reports) U2
 - U2 accuses U4
 - U3 accuses U2 & U5
 - U4 accuses none
 - U5 accuses U2

\[
\begin{array}{c|cccccc}
\text{User} & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 1 & 0 \\
3 & 0 & 1 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]
Accusing Graph

- Input for our community-based scheme

- **Accusing Graph** \(G \):
 - An undirected bipartite graph \(G(A+B, E) \)
 - \(A \): \{accusing identity of users\}
 - \(B \): \{accused identity of users\}

<table>
<thead>
<tr>
<th>User</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Meanings of Nodes

Identity of accusing user
- Colluders
- Careless accuser
- Honest accuser
- User doesn’t accuse

Identity of accused user
- Victim
- Unfortunate user
- Misbehaving user
- Low-abiding user
Accusing Community

- Adopting Girvan-Newman Algorithm to detect the communities and the inter-community edges
Inter-community edge

• **Property 1:**
 It is unlikely that an inter-community edge is an accusing edge between a **colluder** and a **victim**.

• **Property 2:**
 It is unlikely that an inter-community edge is an accusing edge between a **careless accuser** and an **unfortunate user**.

• **Property 3:**
 An inter-community edge most likely is an accusing edge between an **honest accuser** and a **misbehaving user**.
Features for each User

- inter-community edges \rightarrow fair accusations
- Base on the inter-community edges, we design features for nodes

- **Incoming Accusation**, $\mathcal{I}(k) = 2$
- **Outgoing Accusation**, $\mathcal{O}(k) = 5$

$W = \{a, b, c\}$
Clustering (IA, OA) pairs

- Unpicked unfortunate users
- Unpicked misbehaving users
- Unpicked victims
- Picked unfortunate users
- Picked misbehaving users
- Picked victims

Outgoing Accusation vs. Incoming Accusation
Algorithm

1. Partitioning accusing graph into communities.

2. Computing the feature pair \((IA, OA)\) of each user

3. Clustering based on their \((IA, OA)\) pairs, and label users in the cluster with larger \((IA, OA)\) as misbehaving users.
Simulation Setup

• We use simulations to evaluate the performance of our scheme in detecting real misbehaving users in a social moderation system.

• Simulation Assumption:
 1. A **honest user** should only accuses users that definitely **misbehave**.
 2. A **colluder** accuses **victims**.
 3. All users including colluders have a probability of making an accusation **by mistake**.
Evaluation Metric

• What we care is, **False Negative**
 – Misidentifying victims as misbehaving users

• **Collusion Resistance**

\[
\text{collusion resistance} = 1 - \frac{|\text{misidentified victims}|}{|\text{all victims}|}.
\]
Effect of #(Misbehaving users)

Count-based method

Our method

Ratio of Misbehaving Users

Number of Users
Conclusion

• We propose a community-based scheme based on the community structure of an accusing graph.

• The results show that the collusion resistance of our scheme is around 90%.

• We believe that collusion-resistant schemes will play an important role in the design of social moderation systems for Web 2.0 services.
Thank you for your listening

Q&A