An Analytical Approach to Optimizing The Utility of ESP Games

Chien-Wei Lin, Kuan-Ta Chen, Ling-Jyh Chen
Academia Sinica

Irwin King, and Jimmy Lee
The Chinese University of Hong Kong
Motivation

- ESP games annotate images on the web.
- Can we optimize the goodput of the game?
- Service provider can utilize our model to improve their system.
Idea

- Model the performance of the game and optimize it.

- A more generalized ESP game.
 - The number of players can be more than 2.
 - The consensus threshold can be any positive integer, but not larger than the number of players.
 - The stopping condition can be more than 1.
3 Collaborative Quantity

- **Efficiency**
 - the rate that labels are matched.

- **Quality**
 - the proportion of good labels among all matched labels.

- **Utility**
 - the throughput rate of good labels.
 - Utility = Efficiency × Quality
Assumption of Model

- Round-based play
 - Make only one guess in each round.

- Independent guess
 - Current guess is not affected by previous guesses.

- Good and bad words
 - The sizes of good and bad words are both limited.
 - Players will do their best to guess good words.

- Uniform guess
 - The guess is made uniformly.
Parameters in the Model

- Number of players
 - denoted as n.

- Consensus threshold
 - denoted as m.

- Size of good vocabulary
 - denoted as v_{good}

- Probability of guessing good words
 - denoted as $prob_{good}$

- **Stopping condition** is our main variable.
Model Validation

- **Trade-off** between efficiency & quality.
- Validate the model by simulations.
Optimal Stopping Conditions

- Optimal stopping condition changes under different parameter settings.
Benefit of Optimization

- We provide twice as much utility as a non-optimized game.
Contribution

- Model for generalized games.
- Propose an optimal termination condition to optimize the system.
- Game providers can utilize our model to maximize the outcome of games.
Thank You!