
Smart Beholder: An Open-Source Smart Lens for
Mobile Photography

Chun-Ying Huang1, Chih-Fan Hsu2, Tsung-Han Tsai2, Ching-Ling Fan3,
Cheng-Hsin Hsu3, and Kuan-Ta Chen2

1Department of Computer Science and Engineering, National Taiwan Ocean University
2Institute of Information Science, Academia Sinica

3Department of Computer Science, National Tsing Hua University

ABSTRACT
Smart lenses are detachable lenses connected to mobile devices via
wireless networks, which are not constrained by the small form
factor of mobile devices, and have potential to deliver better photo
(video) quality. However, the view�nder previews of smart lenses
on mobile devices are dif�cult to optimize, due to the strict resource
constraints on smart lenses and �uctuating wireless network condi-
tions. In this paper, we design, implement, and evaluate an open-
source smart lens, called Smart Beholder. It achieves three design
goals: (i) cost effectiveness, (ii) low interaction latency, and (iii)
high preview quality by: (i) selecting an embedded system board
that is just powerful enough, (ii) minimizing per-component la-
tency, and (iii) dynamically adapting the video coding parameters
to maximizing Quality of Experience (QoE), respectively. Sev-
eral optimization techniques, such as anti-drifting mechanism for
video frames and QoE-driven resolution/frame rate adaptation al-
gorithm, are proposed in this paper. Our measurement study shows
that Smart Beholder outperforms Altek Cubic and Sony QX100 in
terms of lower bitrate, lower latency, slightly higher frame rate, and
better preview quality. We also demonstrate that Smart Beholder
adapts to network dynamics. Smart Beholder has been made pub-
lic at http://www.smartbeholder.org as an experimental
platform for researchers and developers to optimize smart lenses
and other embedded real-time video streaming systems.

Categories and Subject Descriptors
H.5 [Information Systems Applications]: Multimedia Informa-
tion Systems

Keywords
Measurements; streaming; wireless networks; cameras; optimiza-
tion; smartphones; mobile devices; QoE

1. INTRODUCTION
The popularity of smartphones grows dramatically in the past

few years, and the growth rate shows no sign of slowing down.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from Permissions@acm.org.
MM'15, October 26–30, 2015, Brisbane, Australia.
c
 2015 ACM. ISBN 978-1-4503-3459-4/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2733373.2806261.

For example, a recent report [34] indicates that more than 1 billion
smartphones were shipped in 2013, which is equivalent to 38.4%
of increase compared to 2012. The smartphones come with cam-
eras, and are used by casual photographers to replace their dig-
ital cameras. In fact, we observe clear drops on the number of
shipped digital cameras starting from 2012, and the projected ship-
ment volume of digital cameras is only 54 millions in 2014 [14].
Such replacement effect may be attributed to the convenience of
smartphones and the shrinking performance gap between smart-
phone cameras and digital cameras. Nevertheless, there are still
well-known reasons that differentiate digital cameras from smart-
phone cameras [1]. First, smartphones must be compact in order
to �t into users' pockets. Therefore, most smartphone cameras
are not equipped with bulky optical zoom lenses. The users have
to resort to suboptimal digital zooms. Second, smartphones often
come with smaller optical sensors due to the space concerns, which
lead to inferior photo quality especially under low-light conditions.
Third, smartphones do not support interchangeable lenses, and can-
not adopt long-focus, macro, �sh-eye, and wide-angle lenses for
high-quality and more extreme needs. Last, smartphone cameras
are not normally adjustable in terms of, e.g., ISO, aperture, and
shutter speed, which result in in�exibility. These limitations pre-
ventmobile photographersfrom producing high-quality photos us-
ing their smartphones.

Smart lenses, such as Sony QX100 [11], Kodak SL10 [30], and
Altek Cubic [2], are detachable lenses connected to mobile devices
via wireless networks. Mobile photographers use smartphones (or
tablets) to access the smart lenses for: (i) previewing photos (or
videos) in live view�nders, (ii) adjusting various lens con�gura-
tions, (iii) capturing photo (or video) shots, and (iv) applying digital
effects. Since smart lenses are no longer embedded in smartphones,
the form factor of smart lenses are not limited by that of smart-
phones. Therefore, smart lenses are capable to address the afore-
mentioned limitations, closing up the gap of gears between mobile
and professional photographers. Moreover, some special shooting
angles, such as low-angle and close-up shots, are easier to take with
smart lenses as they are detached from view�nders on smartphones.
While smart lenses offer such new opportunities to mobile photog-
raphers, delivering good photo taking experience is not an easy task
becausesmart lenses are connected to smartphones via wireless
networks, which are sensitive to fading, shadowing, and interfer-
ence in wireless communications. In addition, users have two ex-
pectations: (i) low interaction delay and (ii) high graphics quality,
which are contracting to each other for several reasons. For ex-
ample, while complex motion estimation algorithms lead to good
graphics quality, they also result in long interaction delay. Last,
smart lenses are often implemented on resource-scarce embedded
systems, which further complicate the design, development, and

Figure 1: The working Smart Beholder prototype.

implementation of smart lenses for diverse applications. However,
existing commercial smart lenses are proprietary and closed, and
cannot facilitate customizations and parameter tuning to exercise
the design space.

In this paper, we design, implement, and evaluate an open-source
smart lens, calledSmart Beholder, or Beholder for short. The term
“beholder” is normally used to refer a �ctional �ying orb with a
large eye (commonly seen in AD&D games) [9], in analogy to very
portable smart lenses with powerful (but potentially bulky) optical
lenses. We carefully design and implement Smart Beholder for
cost effectiveness, low interaction delay, and high view�nder pre-
view quality. This is done by (i) selecting an embedded system
board that is just powerful enough, (ii) minimizing per-component
latency, and (iii) dynamically adapting the video coding parameters
to maximizing Quality of Experience (QoE), respectively. Several
optimization techniques, such as anti-drifting mechanism for video
frames and QoE-driven resolution/frame rate adaptation algorithm,
are proposed and implemented.

Smart Beholder is built to be anopenplatform for researchers
and developers to evaluate different design alternatives, so as to
make educated, if not optimal, design decisions. Furthermore, we
conduct real experiments to compare the performance of Smart Be-
holder and two commercial products [2, 11], which are the only two
smart lenses available when we started this project in 2014. Our
experiment results reveal some limitations of the commercial prod-
ucts, e.g., the preview video quality in view�nders is low, which
leaves rooms for improvements. Furthermore, we thoroughly eval-
uate the performance of a complete Smart Beholder platform as
illustrated in Figure 1. In this picture, the server runs on a Rasp-
berry Pi board [29] on the left; the client runs on an Android tablet
showing what the webcam on the server points to. Our evaluation
results show the practicality and ef�ciency of the Smart Beholder
platform over the considered commercial products.

This paper makes the following contributions:

� We present Smart Beholder, an open-source smart lens
project, which is modularized and well documented. Smart
Beholder allows researchers, developers, and amateurs to
test their new ideas by either adjusting system settings or
adding/removing components.

� We develop, implement, and validate a subjective QoE model
to support preview adaptation for higher overall user expe-
rience. Our evaluation results show that Smart Beholder re-
duces about 3 Mbps in bitrate and improves at least 0.3 Mean
Opinion Score (MOS) in preview quality compared to other
commercial products.

� We experimentally compare multiple design choices for bet-
ter performance and ef�ciency. The lessons reported in our
paper will bene�t researchers, developers, and amateurs who
work on smart lenses, e.g., using a hardware encoder saves
at least 86.5% in energy than using a software encoder.

Smart Beholder is released with two types of software packs:
all-in-one and pre-compiled binary packs. In addition, the source
codes and complete documents are available on our project web-
site athttp://www.smartbeholder.org . Users may ex-
tend Smart Beholder to support other hardware platforms running
embedded Linux. Banana Pi-D1 [3] is an open IP camera project
based on a different embedded system board. Compared to Ba-
nana Pi-D1, Smart Beholder has been optimized by solving various
research problems described in the paper, e.g., constructing QoE
model for preview adaptation, and minimizing latency by reducing
memory copies. These optimization techniques can also be applied
to Banana Pi-D1 and other similar projects.

2. RELATED WORK
Smart lenses are remotely related to mobile photography and

camera sensor networks. Mobile photography refers to using
smartphones for photo taking, which has attracted considerable at-
tentions in several application domains, such as health care [33]
and ethnography [15]. Existing mobile photography studies rely
on built-in cameras of smartphones, and can be extended by at-
taching smart lenses. Camera sensor networks consist of motes
with camera sensors and network interfaces, and transmit cap-
tured videos over multi-hop wireless networks to one or multiple
clients [12, 36]. Camera sensor networks focus more on multi-hop
routing, while smart lenses support single-hop transmission of high
quality photo (video) to smartphones (tablets).

Remote screen sharing systems impose similar requirements as
smart lenses: (i) low interaction delay and (ii) high video qual-
ity, but Chang et al. [6] show that earlier screen sharing sys-
tems [4, 22, 35] fail to concurrently achieve these two goals. To
cope with this limitation, several companies offer streaming-based
cloud gaming platforms [13, 26, 32], and multiple research groups
also develop open-source cloud gaming [19] and screen sharing [5]
platforms. Some platforms adopt adaptive video streaming technol-
ogy to optimize QoE under various network conditions [17]. These
remote screen sharing systems are not designed for resource-scarce
smart lenses, and they assume the Internet infrastructure is always
available. Our proposed Smart Beholder platform is, in contrast,
tailored for smart lenses.

Although the performance evaluations of smart lenses have never
been done, similar measurement methodologies have been pro-
posed for remote screen sharing systems [21, 31], cloud gaming
platforms [7, 8], and screencast technologies [16, 18]. Nonetheless,
the existing measurement methodologies work on videos captured
from the frame buffer, while the methodology proposed in this pa-
per considers real-time videos captured from camera sensors. The
measurement methodology is useful in its own right, e.g., to eval-
uate the commercial smart lens products which are proprietary and
closed.

3. PROPOSED SYSTEM ARCHITECTURE
The server and client architecture of the proposed Smart Be-

holder is given in Figure 2. Smart Beholder is inspired by cloud
gaming and screen sharing platforms [5, 19], but concentrates on
solving the unique challenges of smart lenses, including (i) re-
source constraints of embedded system boards, (ii) uncertainty of

Table 1: Candidate Embedded System Boards
Arduino Raspberry Pi (B) UDOO BeagleBoard Pandaboard Jetson TK1

CPU
ATmegaAVR, ARM1176JZF-S ARM Cortex-A9, ARM Cortex-A8 ARM Cortex-A9 ARM Cortex A15
ARM Cortex-M3 ARM Cortex-M3/M4

GPU None Broadcom VideoCore IV Integrated graphics PowerVR SGX530 SGX540 graphics 192 SM3.2 CUDA cores
I/O port Regular USB USB 2.0 USB 2.0 USB 2.0 USB 2.0 USB 3.0
HW encoder None H.264 H.264 H.264, MPEG4 H.264, MPEG4 H.264, VC-1, VP8
Memory 16 - 512 KB 512 MB 512 MB - 1 GB 256 - 512 MB 1 GB 2 GB
Price $13 - $60 $35 $135 $49 - $149 $174 - $182 $192
Camera module Yes Yes Yes Yes Yes No

single-hop short-range networks, and (iii) high overhead of exter-
nal camera modules. The Smart Beholder server runs on an embed-
ded system board, and consists of three software components: AP
(Access Point) service, DHCP (Dynamic Host Con�guration Pro-
tocol) server, and video streamer. The AP service turns the server
into an access point, allowing Smart Beholder clients to connect
to the server via Wi-Fi (or other wireless networks). The DHCP
server assigns IP addresses to connected mobile clients. Mean-
while, the video streamer: (i) captures videos using a camera, (ii)
encodes videos using software/hardware codecs, and (iii) streams
encoded videos via the RTSP (Real-Time Streaming Protocol) and
RTP (Real-Time Protocol) servers.

The Smart Beholder client runs on mobile devices and consists
of two components: UI (User Interface) and video streamer. The
UI component is composed of the view�nder and camera controller.
The view�nder renders the live videos received from the Smart Be-
holder server, and the camera controller sends camera control com-
mands to the server. Possible camera control commands include
taking photo, recording video, setting white balance, applying im-
age effects, con�guring exposure, and tuning sensitivity. The video
streamer contains hardware/software decoders, controller client,
and RTSP/RTP client.

4. DESIGN OBJECTIVES
Smart Beholder aims to provide an open platform for researchers

and developers to study and build real-time mobile photography
applications. The design objectives of the proposed Smart Beholder
platform include:

� Cost effectiveness. To allow more researchers and devel-
opers to use Smart Beholder, we carefully select more cost-
effective hardware components. Users are, however, free to
swap in/out any of the components to meet their needs.

� Low latency. Users will be annoyed by long latency
when using mobile photography applications, especially in
view�nder previews. To provide better photo taking experi-
ence, we strive to minimize latencies of all components.

� High quality . A fundamental requirement for photography
is maximizing the photo (video) quality. The photo (video)

�����������	
 ���
��

��������
��

������
���

������
���
����

����
�	�����

���������
���
��

�������
������

������	���
������

��	
������

�������������	

��	
������
����	

 �������!��"

���
�������

���
�������

������
�
������

!#��
$	
������

��	
����������
��
 �������!��"

Figure 2: The server and client architecture of Smart Beholder.

quality largely depends on the hardware speci�cations of
camera components, which are out of the scope of this work.
On the other hand, sending live previews (for both photo and
video shots) incurs a huge amount of real-time traf�c, and
thus leaves more rooms for optimization. Indeed, the qual-
ity of live previews signi�cantly affects how a photographer
sees and composes photos, especially for portraits and close-
up shots. Hence, for higher QoE, we endeavor to maximize
the preview video quality.

We emphasize that concurrently achieving all design goals is no
easy task. For example, we have to optimize individual compo-
nents in the video processing pipeline to minimize the system-wide
latency. In addition, we need to consider multiple user-perceived
quality metrics, such as graphics quality and interactivity, which
further complicates the design of Smart Beholder. We present our
approaches to achieve the design goals in the next few sections.

5. HARDWARE PLATFORM
We present the options of main hardware components, and our

design decisions.

5.1 Embedded System Boards
Table 1 summarizes the candidate boards. While Arduino is the

least expensive board, it does not have enough resources (suchas
memory) to host Linux OS. This signi�cantly increases the imple-
mentation complexity. Moreover, Arduino is not equipped with
GPU, which is dictated by real-time video encoding. Hence, we
adopt Raspberry Pi, which has a GPU and supports Linux OS and
is just powerful enough for Smart Beholder.

5.2 Camera Modules
There are two ways to attach cameras to Raspberry Pi: USB

and Camera Serial Interface (CSI). We have experimentally inte-
grated cameras via both interfaces, as detailed below. We adopt
Video4LinuxAPI to access USB cameras. The API supports UVC
(USB Video Class) compatible cameras [25]. The slowerread
system call supports all UVC cameras, while the more ef�cient
mmapsystem call only supports some UVC cameras. Modern we-
bcams like Logitech C525 are supported bymmap, but many of
them can only capture raw video frames in YUYV (YUV422) for-
mat. The YUYV frames are not supported by some encoders, and
have to be converted into YUV420 format. We �nd that Raspberry
Pi only achieves 6 to 9 fps (frame per second) at 720p resolution.
Hence, USB cameras are less suitable for live previews. CSI cam-
eras, such as Omnivision OV5647, supportVideo4LinuxandOpen-
MAX IL. Different from user-spaceVideo4Linux, OpenMAX ILab-
stracts a set of multimedia hardware components for developers to
use in an ef�cient way. Therefore, we employOpenMAX ILto ac-
cess CSI cameras. Doing so increases the 720p frame rate to 15 fps,
which is still lower than acceptable. A closer look indicates that

������
��������	

����
������
��������	

�����������
������

������������
������

������������
��
������������	���	�������������

��������
���	����

�

�

� �

�
������
���	����

��������
�������

(a)

������
��������	

����
������
��������	

�����

�����������

������

������������
������

������������
��
������������	���	�������������

��������
���	����

�

�

�
����������	����

� ����������!������

(b)

Figure 3: Server software components: (a) unoptimized and (b)
optimized.

such inferior frame rate is partially due to expensive (and redun-
dant) memory copies, which are further optimized in Section 6.2.

6. SOFTWARE DESIGN DECISIONS
We minimize the latency of several software components, to

minimize the overall latency.

6.1 Hardware Encoder
To reduce the encoding latency, we leverage Raspberry Pi's

H.264 hardware encoder viaOpenMAX IL. This encoder supports
various con�guration options, and we exercise the following op-
tions: pro�le, bitrate, frame-rate, GoP size, and B frames. One
minor issue of Raspberry Pi's hardware encoder is lack of mecha-
nisms to retrieve the SPS (Sequence Parameter Set) and PPS (Pic-
ture Parameter Set) parameters associated with an encoder, which
are mandatory for correctly setting up the RTSP/RTP server. To
cope with this limitation, we �rst initialize the hardware encoder
with a set of parametersP , use it to encode some dummy frames,
and then retrieve the SPS and PPS parameters from the encoded
video frames. We use those retrieved SPS and PPS parameters to
setup the RTSP/RTP server. Next, we re-initialize the encoder with
the same set of parametersP in order to ensure that encoded video
frames have identical SPS and PPS parameters with the RTSP/RTP
server. This allows us to use hardware encoder for lower latency.

6.2 Reduce the Number of Memory Copies
Figure 3(a) presents the software components that are not opti-

mized for low latency. The camera capturer and hardware encoder
both span over software and hardware, and thus several memory
copies, such as arrows 1 and 3, incur unnecessary overhead. We
propose an optimized design in Figure 3(b), which directly passes
raw video frames from camera to hardware encoder. By doing so,
we signi�cantly increase the capture and encoding rates to 60 fps at
720p and 30 fps at 1080p. This leads to much smoother previews
and shorter latency. In addition, the optimized server components
are simpler and easier to implement.

6.3 Software Decoder
We have experimentally implemented both software and hard-

ware decoders. Intuitively, hardware decoders run faster than
software ones. However, our experiments using Android'sMe-
diaCodec framework to access hardware decoders on several
Sony/HTC mobile devices incur an additional delay between 80
and 100 ms, which is independent to frame resolutions. Some pre-
liminary tests indicate that of�cial Java-based hardware decoder

������ ����	�
�	���

���

�

�
�����
��
�

�������� ��������

�������
�

�
�����
��
�

������

�����	����

(a) Good network condition.

������ ����	�
�	���

� �

����	�

�
����

�������� ��������

�������
�

�
�����
��
�

������

�����	����
�� �

(b) Bad wireless network condition.

������ ����	�
�	���

��

���

��
�
����

��������
� �

��������

�������
�

�
�����
��
�

������

�����	����
�

(c) Recovered from bad wireless network condition.

Figure 4: An illustrative example of time-drifted video frames.

APIs always buffer a couple of frames. The buffer size, however, is
not con�gurable viaMediaCodecframework. Therefore, we adopt
ffmpegsoftware decoder, which achieves 24 fps at 720x480. This
is suf�cient for live preview on mobile clients. By adopting soft-
ware decoders, we have full control over the decoding and buffering
mechanisms. For minimum delay, we decode a frame whenever
we see an end-of-frame mark; consequently, we achieve a� 10
ms buffering time unless the network condition is highly unstable.
Currently we adopt the software decoder for shorter latency, but fu-
ture Smart Beholder may switch to hardware decoders if the extra
buffering time can be controlled and eliminated.

6.4 Time-Drifted Video Frames
Our early experiments indicate that playout times of video

frames may be drifted. Figure 4 presents an example that causes
time-drifted video frames. When network condition is good (Fig-
ure 4(a)), server sends video frames at a �xed rate, and mobile
client renders video frames at the same rate. When network trans-
mission is stalled due to weak signals or wireless interference (Fig-
ure 4(b)), video frames are queued on the server (at IP or MAC
layer). Once network condition is recovered (Figure 4(c)), queued
video frames are sent in a burst. The decoder at mobile client may
fail to keep up with bursty video frames, and renders some video
frames too late. This results in time-drifted video frames.

We propose to drop late video frames at mobile clients to address
this issue. For this purpose, we attach two timestamps with each
video frame: (i) receiving time at client and (ii) sending time at
server. For framei , we denote the receiving timestamp astr i and
sending timestamp asts i , and the time offsets as�tr i = tr i � tr 1

and �ts i = ts i � ts1 . The frame delay is� f i = �tr i � �ts i .
We drop a framei iff � f i > L , whereL is a user-con�gurable
threshold.L typically is in the order of tenth of ms, and we use 50
ms if not otherwise speci�ed.

7. ADAPTIVE LIVE PREVIEW
We develop empirical models and then propose an ef�cient adap-

tation algorithm to dynamically maximize the QoE of live pre-
views.

7.1 Single-Hop Wi-Fi Network Model
Estimating available bandwidth of an ongoing live preview ses-

sion is extremely challenging, although several attempts have been
made in wired [20, 28] and wireless [24] networks. These ap-
proaches sendextraprobing packets, which incur additional over-
head on the already tight network resources. In contrast, we de-
velop a customized network model to leverageexisting video pack-
etsfor estimating the available bandwidth. Our core idea, inspired
by WBest [24], is to keep track of the size and receiving times-
tamp of packetp as sp and tr p . We then compute the disper-
sion time of every pair of adjacent packets (belonging to the same
video frame), and estimate the instantaneous capacitycp ascp =
sp� 1=(tr p � tr p� 1). We can use video packets as probing packets,
because: (i) Smart Beholder server sends a video frame every 33
ms (assuming a 30-fps con�guration), and thus the instantaneous
sending bitrate is much higher than the coding bitrate; and (ii) each
video frame is composed of several back-to-back packets due to
the limited network MSS (Maximum Segment Size). Furthermore,
the single-hop Wi-Fi network is dedicated to Smart Beholder, and
thus the available bandwidth is the same as estimated capacity. Our
initial experiments indicate thatcp �uctuates quite a bit. Therefore,
we adopt a sliding window ofW + 1 packets for de-noising. This
is similar to prior studies [20, 24, 28], which employ diverse aggre-
gation approaches, such as mean, medium, and maximum. To be
more general and adaptive, we sort all instantaneous capacity val-
ues within sliding window (packetscp� W ; cp� W +1 ; : : : ; cp) in the
increasing order. We let�c�

p be the� -percentile capacity, and use it
to estimate the network capacity (available bandwidth).

We have instructed Smart Beholder and conducted experiments
to determine the bestW and� parameters to better match the es-
timated capacity with the ground truth given by (intrusive) tools,
like iperf . We place the sender and client in a hallway, and vary
the distance between them between 1 and 40 meters. We mea-
sure the network capacity using Smart Beholder andiperf at
each distance for 1 minute. We then derive the best� parameter
based on the ground truth. We �rst vary the sliding windows size
W = f 375; 750; 1500; 3000g and repeat the experiments 5 times
to check the consistency of the best� parameters. We compute the
variance of� and �nd that the variance becomes negligible (at most
8� 10� 4) with W = 3000. Hence, we setW to be 3000. In our ex-
periments, we �nd that� parameter depends on thesignal strength,
denoted asg, of Wi-Fi. Most OS's, including Android, constantly
report Wi-Fi signal strength in dBm, which may be readily used by
our adaptation algorithm. Therefore, we conduct additional exper-
iments and log theg values, in order to model� as a function of
g. The empirical results reveals that� can be modeled as a piece-
wise linear function [23] as illustrated in Figure 5. Using adaptive
� parameters allow us to better approximate the ground truth from
iperf without the excessive network overhead. Last, we note that,
currently� values are derived of�ine, while online training of� is
also possible.

7.2 Quality of Experience Model
Smart Beholder supports dynamic adjustments of bitrateb, frame

rate f , and resolutionr of view�nder previews on-the-�y. How-
ever, determining these encoding parameters for high QoE is chal-
lenging, and therefore we conduct a user study to derive the model
for our adaptation algorithm as follows. We run the sever on a
Raspberry Pi and the client on an Xperia tablet in our lab. We
vary the encoding con�gurations in terms of bitrateb = f 0:5; 1; 2g
Mbps, frame ratef = f 10; 20; 30g fps, and resolutionr =
f 160x120, 352x288, 544x288, 640x480, 864x480g. We recruit
subjects on campus and online for the user study. Each subject has

-80 -70 -60 -50
0

20

40

60

80

100

Signal Strength (dBm)

P
er

ce
nt

ile
,

(%
)

Figure 5: Piecewise linear model of� .

Graphics Quality

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x 864x

10
20

30

2.1

2.2

2.1

4.0

3.9

3.9

4.4

4.2

4.2

4.7

4.4

4.2

4.5

4.2

3.8

Interactivity

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x 864x

10
20

30

3.4

4.3

4.5

4.0

4.4

4.7

4.1

4.7

4.9

4.2

4.8

4.9

4.1

4.7

4.7

Overall Score

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x

10
20

30

2.3

2.7

2.6

3.9

3.9

4.1

4.1

4.2

4.4

4.1

4.4

4.3

4.1

4.2

3.9

B
itr

at
e

2
M

bp
s

B
itr

at
e

1
M

bp
s

B
itr

at
e

0.
5

M
bp

s
Graphics Quality

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x 864x

10
20

30

2.1

2.2

2.2

4.0

4.3

4.1

4.8

4.8

4.7

5.1

5.0

4.9

5.2

5.0

5.0

Interactivity

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x 864x

10
20

30

3.6

4.3

4.5

4.1

4.8

4.8

4.3

5.0

5.0

4.2

4.9

5.0

4.4

4.9

5.2

Overall Score

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x

10
20

30

2.4

2.6

2.6

3.9

4.3

4.1

4.4

4.8

4.7

4.5

4.7

4.8

4.6

4.8

4.9

B
itr

at
e

2
M

bp
s

B
itr

at
e

1
M

bp
s

B
itr

at
e

0.
5

M
bp

s

Graphics Quality

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x 864x

10
20

30

2.2

2.3

2.1

4.0

4.2

4.2

4.7

4.8

5.0

5.3

5.2

5.5

5.3

5.5

5.5

Interactivity

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x 864x

10
20

30

3.6

4.4

4.4

4.1

4.8

4.9

4.4

5.1

5.3

4.4

5.1

5.4

4.6

5.1

5.4

Overall Score

Resolution

F
ra

m
e

ra
te

 (
fp

s)

120 288 288 480 480
160x 352x 544x 640x

10
20

30

2.4

2.7

2.5

3.8

4.2

4.3

4.4

4.7

5.0

4.5

5.0

5.3

4.6

5.1

5.4

B
itr

at
e

2
M

bp
s

B
itr

at
e

1
M

bp
s

B
itr

at
e

0.
5

M
bp

s

Figure 6: Mean MOS scores from a Smart Beholder testbed.

at most 3 minutes to use Smart Beholder under each con�guration.
For each con�guration, a subject gives three quality scores between
1 (worst) and 7 (best) on: (i) graphics quality, (ii) interactivity, and
(iii) overall satisfaction. Subjects are free to terminate 3-minute
experiments earlier. We have 30 subjects (63% male) and perform
89 sessions (45 rounds per session) in total. Each session lasts for
31 minutes on average, and the total user study time is almost 46
hours.

We made two observations on the overall MOS scores given in
Figure 6. First, when the bitrate is� 1 Mbps, higher frame rates
and resolutions lead to higher MOS scores. Second, when the bi-
trate is lower (0.5 Mbps), higher resolutions (such as 864x480) may
result in lower MOS scores (than, e.g., 544x288). These two ob-
servations show the importance of the QoE model becausehigher
bitrates, frame rates, and resolutions do not guarantee better QoE.
Based on Figure 6, we letQ b be theoverall MOS tableat bitrateb,
andqb(f; r) be the MOS score atb, f , andr . Q b table is given in
the �gure if b 2 f 0:5; 1; 2g, but is interpolated/extrapolated other-
wise. Then, to getqb(f; r) we look up tableQ b with potential inter-

Figure 7: Photos of the considered smart lenses: Smart Be-
holder (left), Altek Cubic (middle), and Sony QX100 (right).

Algorithm 1 Preview Adaptation Algorithm
1: for everyT secondsdo
2: Compute�c�

p and�
3: if b < �c�

p and� < � l then
4: b = b+ (�c�

p � b) � � i

5: else ifb > �c�
p or � > � h then

6: b =
 r � �c�
p

7: end if
8: Givenb, lookupqb(f � ; r �) for the highest MOS score
9: Recon�gure video encoder withb; f � ; r �

10: end for

polation/extrapolation as well. The presented QoE model enables
us to pick the encoding parameters for optimal user experience.

7.3 Preview Adaptation Algorithm
We develop an ef�cient algorithm to dynamically adjust the en-

coding parameters, in order to avoid QoE degradation due to net-
work impairments such as insuf�cient bandwidth and high packet
loss rate. The algorithm runs periodically, evaluating available
bandwidth �c�

p (using the network model developed above) and
packet loss rate� on mobile client once everyT seconds.T is
a system parameter, which is set to 10 seconds by default.�c�

p and
� are sent back to the server to make decisions on encoding param-
eters based on four other system parameters: minimum loss rate
� l , maximum loss rate� h , bitrate increment step� i , and bitrate
restoration factor
 r . If not otherwise speci�ed, we set� l = 5% ,
� h = 20%, � i = 0 :2, and
 r = 0 :7.

Algorithm 1 gives the pseudocode of our algorithm. Line 3
checks whether our encoding bitrate is lower than available band-
width1 and packet loss rate is low; if it passes, line 4 increases
encoding bitrate. Lines 5 and 6 are similar, but to reduce encoding
bitrate by setting it to a certain ratio (i.e.,
 r) times the measured
available bandwidth. At line 7, we know the target encoding bitrate
b, and employ the QoE model to get the bestf � andr � . Line 9
recon�gures the video encoder. It is easy to see that our preview
adaptation algorithm runs in constant time at the server. At the
mobile client, sorting instantaneous capacity values when deriving
�c�

p dominates the time complexity, which isO(W log W). Given
thatW is at most a few thousands, the computation complexity is
relatively negligible to modern smartphones.

Last, we evaluate the accuracy of the proposed adaptation algo-
rithm by separating the server and client by 1.25, 2.5, 5, 10, and 20

1We note that the protocol overhead is considered in our imple-
mentation when comparing�c�

p and� . We omit this technical detail
in our descriptions for brevity.

Table 2: Average Accuracy of Capacity Measured by Beholder
Distance 1.25 m 2.5 m 5 m 10 m 20 m
Beholder 44.89 Mbps 39.33 Mbps 33.76 Mbps 31.29 Mbps 10.02 Mbps
iperf 39.47 Mbps 36.22 Mbps 31.77 Mbps 29.38 Mbps 10.06 Mbps

Deviation 13.7 % 8.5 % 6.3 % 6.5 % 0.4 %

Table 3: Considered Smart Lenses
Altek Cubic Sony QX100 Smart Beholder

Model Altek Cubic C01 Sony DSC-QX100 Raspberry Pi Model B
Image

Resolution
2 MP (1600x1200)

13 MP (4160x3120)
5 MP (2592x1944)

18 MP (4864x3648) 5 MP (2592x1944)

Video
Resolution 1920x1080 @ 30 fps1920x1080 @ 30 fps1920x1080 @ 30 fps

Figure 8: Experiment setup for inferring the preview resolu-
tions of commercial smart lenses.

meters. We use Smart Beholder andiperf to measure the network
capacity for 1 minute at each distance, and repeat the experiments 5
times. Table 2 summarizes the estimated capacity from Smart Be-
holder andiperf . This table shows that Smart Beholder achieves
very small deviation compared to the ground truth fromiperf .
The deviation is higher under shorter distances, which however is
not a big issue because the available bandwidth is suf�cient (e.g.,
� 40 Mbps at 1.25 m) for all practical frame rates and resolutions.

8. PERFORMANCE EVALUATION
We conduct real experiments to compare Smart Beholder against

commercial smart lenses.

8.1 Preview Resolutions of Commercial
Smart Lenses

We consider two commercial smart lens products: Altek Cubic
and Sony QX100. They both offer in-house mobile apps on An-
droid devices. Figure 7 shows the three smart lenses and Table 3
presents their speci�cations. Our Smart Beholder is fully con�g-
urable, and supports different preview resolutions. The two com-
mercial products only support �xed preview resolutions, which is
unknown to users.

We use a PIMA/ISO 12233 Resolution Test Chart [10] to infer
the preview resolutions. The experiment setup is presented in Fig-
ure 8. We place the smart lens about 30 centimeters away from
the test chart, so that the test chart on view�nder approximately
spans the viewable area, and stream preview videos to the tablet
on the right. We use only the lower-middle part of the test chart,
where 10 numbered blocks with vertical lines in different densities
(and widths) are arranged into a row. The block numbers indicate
how dense these vertical lines are: from 1 (fewest, thickest lines) to
10 (most, thinnest lines), and we refer to the block number asline
density. To count the number of lines in blocks with higher line
densities, video previews with higher resolutions are needed. We

Figure 9: Live preview screenshots of line intensity testing re-
gion on the resolution test chart.

 0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Line density

V
ie

w
ab

le
 li

ne
s

ra
tio

C
C

C

C C C C C C C

Q Q Q

Q

Q

Q

Q

Q

Q Q

1

1

1 1

1 1
1 1 1 1

2

2

2

2 2 2

2 2 2 2

3 3 3
3

3

3

3

3

3

3

4 4 4
4

4 4
4

4

4

4

5 5 5 5
5 5 5

5

5

5

1 2 3 4 5 6 7 8 9 10

C
Q
1
2
3
4
5

Cubic
QX100
Beholder 160x120
Beholder 320x240
Beholder 640x480
Beholder 1280x720
Beholder 1920x1080

Figure 10: Viewable line ratios of different smart lenses under
diverse line densities.

de�ne viewable line ratioas the fraction of distinguishable vertical
lines over all vertical lines in the test chart.

We then execute the following experiments with Altek Cubic,
Sony QX100, and Smart Beholder under 5 different resolutions.
For each smart lens (and resolution), we take screenshots of the
live preview of the resolution test chart and crop the line inten-
sity testing region, as shown in Figure 9. We then convert the re-
gional screenshots to binary (black and white) using the threshold
128 (with the gray levels ranging from 0 to 255) and programmati-
cally count the numbers of vertical lines in individual blocks (from
1 to 10) in the video previewers in order to calculate the viewable
line ratios. We plot the results in Figure 10. This �gure shows that
Altek Cubic and Sony QX100 achieve very similar viewable line
ratios over different line densities as Smart Beholder at 320x240
and 640x480 resolutions, respectively. Hence, we conclude that
the preview resolutions of these two commercial products are ap-
proximately 320x240 and 640x480, respectively. Even though the
quality of camera lenses may be very different, we believe that the
(relatively low) resolutions of preview video would dominate how
distinguishable the thin lines are.

Figure 11: Testbed setup.

�������

�	
���
�
	��

����

��

���

	��

�������
���	���

�	������	�

�������
�

���
!���

�������
���

�
 �	������"
��

�	��������"
�
�����#$�%�&

��	����'(��
�������	��

�	�
��� !���
�

Figure 12: Experimental procedure.

8.2 Setup
We create two video/image datasets for objective and subjective

performance metrics. For objective metrics, we use a Canon EOS
600D camera to capture eight segments of 25-sec videos at 720p.
Half of the segments are taken indoor (outdoor); and all segments
are taken under typical smart lens usage scenarios. We concatenate
eight segments into a 216-sec video, in which we insert a 2-sec
white screen between any two consecutive videos to reset the video
codecs for minimum interference across videos. This dataset rep-
resents typical view�nder previews, and are suitable for objective
metrics. It is, however, less suitable for subjective metrics due to
the relatively low resolution. For subjective metrics, we collect 9
high-resolution (1080p) popular Creative Commons (CC) photos
from Flickr. We play each photo for 10 seconds, and record the
view�nder previews using different smart lenses.

Figure 11 shows the testbed used in our lab. We play the videos
on the video source display on the right, put a Smart Beholder (or
other smart lenses) server in front of the video source display, and
send the previews to the corresponding smart lens client running on
a tablet (Sony Xperia). The server and mobile client have a distance
of 1 meter. The tablet is connected to an external monitor on the
left. Last, we use a Canon EOS 600D camera to capture the videos
of the two side-by-side displays at 60 fps. The captured video is
then used to derive performance results. We also runtcpdump on
the tablet to capture and calculate the transmitted bitrate. Figure 12
summarizes the measurement procedure.

For a subjective evaluation of preview quality, we conduct a
crowdsourcing-based user study over the Internet via web inter-
face. We present the original images (from Flickr) on the left
half of the web page, and the degraded images (extracted from the
view�nder previews) on the right half. For each comparison, a sub-
ject gives a DMOS (Differential Mean Opinion Score) between 0
(un-degraded) and 6 (seriously degraded and unacceptable). We

Beholder Cubic QX100

B
itr

at
e

(M
bp

s)
0

1
2

3
4

5
6

(a)
Beholder Cubic QX100

La
te

nc
y

(m
s)

0
50

10
0

15
0

20
0

(b)
Beholder Cubic QX100

F
ra

m
e

ra
te

 (
fp

s)
0

5
10

15
20

(c)
Beholder Cubic QX100

P
re

vi
ew

 Q
ua

lit
y

S
co

re
1

2
3

4
5

(d)

Figure 13: Overall performance comparisons among smart lenses:(a) bitrate, (b) latency, (c) frame rate, and (d) preview quality.

convert the DMOS score to an MOS score by MOS = 7� DMOS
and use the resulting MOS score to be the image quality metric.
We recruit 52 subjects and perform 117 sessions with a total of
14,410 comparison rounds. The total study duration is 30 hours,
where each session lasts for 15 minutes on average.

We consider the following performance metrics:

� Bitrate, which is the number of bits sent from the server to
mobile client every second.

� Latency, which is the delay between capturing and display-
ing a video frame on mobile client.

� Frame rate, which is the number of frames rendered at mo-
bile client every second.

� Energy consumption, which is the amount of consumed en-
ergy.

� Preview quality, which is the MOS score. We focus on pre-
views, because �nal images/videos are either saved on smart
lenses, or transferred to mobile clients in batches at very high
quality.

The �rst four metrics are objective and the last one is subjective.
We give mean results with 95% con�dence intervals if applicable.

8.3 Results
We �rst present the results with static Smart Beholder con�gu-

rations, which are followed by the results with preview adaptation
algorithm enabled.

Smart Beholder outperforms other smart lenses.We plot the
overall performance in Figure 13. Figure 13(a) shows that Smart
Beholder consumes as low as half of the bitrate compared to com-
mercial smart lenses. This conforms to our expectation as we con-
�gure Smart Beholder to use an average bitrate of 3 Mbps. Fig-
ure 13(b) reveals that Smart Beholder results in at least 50 ms
shorter latency, which in turn leads to more responsive user experi-
ence. Figure 13(c) depicts that our Smart Beholder achieves com-
parable, actually slightly higher, frame rate than the two commer-
cial smart lenses. In summary, the Smart Beholder outperforms the
two commercial products in all considered objective performance
metrics. We report the preview image quality in Figures 13(d),
which shows that our Smart Beholder achieves better MOS scores
than two commercial smart lenses. More importantly, such higher
preview quality does not come with higher network nor system
loads as Figures 13(a) and 13(b) show.

Con�gurability of Smart Beholder. We vary the con�gurations
of Smart Beholder following the parameter values in Table 4 with
the default values highlighted in boldface. With each con�gura-
tion, we measure the system performance using the 216-sec pre-
view video. Two sets of sample results are given below. First, we

Table 4: The System Parameters
Parameter Values

Frame Rate 6 fps, 12 fps,24 fps
Resolution 160x120, 320x240,640x480, 1280x720, 1920x1080
Bitrate 1 Mbps, 2 Mbps,3 Mbps

1 2 3
Target bitrate (Mbps)

B
itr

at
e

(M
bp

s)
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

(a)

1 2 3
Target bitrate (Mbps)

La
te

nc
y

(m
s)

0
20

40
60

80
10

0
12

0

(b)

1 2 3
Target bitrate (Mbps)

F
ra

m
e

ra
te

 (
fp

s)
0

5
10

15
20

(c)

Figure 14: Beholder performance with different target bi-
trates: (a) achieved bitrate, (b) latency, and (c) frame rate.

adjust the target encoding bitrates and present the results in Fig-
ure 14. This �gure depicts that when the target bitrate is increased,
the achieved bitrate (Figure 14(a)) and the latency (Figure 14(b))
increase, while the frame rate (Figure 14(c)) slightly decreases. We
believe the slightly increased latency and slightly decreased frame
rate is due to a higher complexity and workload in decoding the
preview videos at the client.

Next, we adjust the target frame rate and give the results in Fig-
ure 15. Figure 15(c) shows that Smart Beholder always achieves
the target frame rates, which reveals the ef�ciency of its imple-
mentation. Figures 15(a) and 15(b) show that higher target frame
rates lead to higher bitrate and lower latency, which are consis-

6 12 24
Target frame rate (fps)

B
itr

at
e

(M
bp

s)
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

(a)

6 12 24
Target frame rate (fps)

La
te

nc
y

(m
s)

0
50

10
0

15
0

(b)

6 12 24
Target frame rate (fps)

F
ra

m
e

ra
te

 (
fp

s)
0

5
10

15
20

(c)

Figure 15: Beholder performance under different target frame
rates: (a) bitrate, (b) latency, and (c) frame rate.

0 50 100 150 200

0
4

8
12

Time (sec)

B
itr

at
e

(M
bp

s) Beholder Cubic QX100Beholder Cubic QX100Beholder Cubic QX100

0 50 100 150 200

0
10

0
20

0
30

0

Time (sec)

La
te

nc
y

(m
s) Beholder Cubic QX100Beholder Cubic QX100Beholder Cubic QX100

0 50 100 150 200

0
10

20
30

40

Time (sec)

F
ra

m
e

ra
te

 (
fp

s) Beholder Cubic QX100Beholder Cubic QX100Beholder Cubic QX100

Figure 16: Needs of adaptation algorithm: (a) bitrate, (b) la-
tency, and (c) frame rate over time.

tent with our intuition, as a 6 fps live preview incurs at least
1000ms� 6 � 166 ms latency. In summary, Figures 14 and 15
demonstrate the con�gurability of our implementation.

Needs of adaptation algorithm.We zoom into a sample run of
the 216-sec video, and report the per-second bitrate, latency, and
frame rate in Figure 16. Figures 16(a) and 16(b) show that Smart
Beholder constantly results in low bitrate and low latency compared
to the two commercial smart lenses. Figure 16(c) shows that Sony
QX100 suffers from severe frame rate drops at 150-th, 175-th, and
205-th seconds, due to bad network conditions. Smart Beholder
also suffers from a frame rate drop at 110-th second, which demon-
strates the needs of preview adaptation algorithm.

Effectiveness of preview adaptation algorithm. We conduct
experiments to quantify the performance of our proposed preview
adaptation algorithm. We �x the position of the server and move
the client following a 3-minute moving pattern of distance from

0 50 100 150
0

5

10

15

20

25

30

D
is

ta
nc

e
(m

)

0 50 100 150
-100

-80

-60

-40

Time (s)

S
ig

na
lS

tr
en

g
th

(d
B

m
)Distance (m)

Signal Strength (dBm)

(a)

0 50 100 150
0

10

20

30

40

50

60

C
a

pa
ci

ty
(M

bp
s)

0 50 100 150
0

10

20

30

40

50

60

Time (s)

B
itr

a
te

(M
bp

s)

Capacity (Mbps)
Bitrate (Mbps)

á 14 Mbps, 60 fps, 1280x720 ñ

á 30.7 Mbps, 60 fps, 1280x720 ñ

á 1 Mbps, 24 fps, 640x480 ñ

(b)

Figure 17: A sample of 3-minute experiment: (a) distance af-
fects signal strength and (b) recon�guration (bitrate) decisions
are driven by capacity estimation.

 Static #1 Static #2 Adaptive

Graphics Quality

P
re

vi
ew

 Q
ua

lit
y

S
co

re
0

1
2

3
4

5

 Static #1 Static #2 Adaptive

Interactivity

P
re

vi
ew

 Q
ua

lit
y

S
co

re
0

1
2

3
4

5

 Static #1 Static #2 Adaptive

Overall Score

P
re

vi
ew

 Q
ua

lit
y

S
co

re
0

1
2

3
4

5

Figure 18: MOS scores of different con�gurations and preview
adaptation algorithm.

5 to 30 m, while con�guring Smart Beholder to record the signal
strength, capacity, and bitrate. We plot the results in Figure 17. Fig-
ure 17(a) shows that the signal strength is inversely proportional to
the distance, which is inline with our intuition. At the beginning
of the experiment, we set the con�guration to beh1 Mbps, 24 fps,
640x480i , and trigger the adaptation algorithm once every 10 sec-
onds. Figure 17(b) shows the estimated capacity and the sample
bitrate decisions of our adaptation algorithm throughout the exper-
iment. The capacity decreases with the decreasing signal strength.
At 140-th second, the signal strength increases a little because the
client stays at 20 meters for a while, which makes the network con-
dition more stable. The adaptation algorithm increases the encod-
ing bitrate until it approaches the estimated capacity (at 70-th sec-
ond). At that moment, our algorithm recon�guresf to 60 fps and
r to 1280x720 for the highest MOS score based on the QoE model
(Section 7.2). Several other recon�guration samples are also anno-
tated in Figure 17(b). Last, we note that the resulting bitrate may
be lower than the con�gured bitrate, e.g., atf = 60 fps andr =
1280x720, the highest resulting bitrate is 9 Mbps in our experi-
ments.

We next conduct a user study for a subjective evaluation on the
preview adaptation algorithm. We compare our algorithm against
two con�gurations: static #1, which ish2 Mbps, 10 fps, 864x480i ;
and static #2, which ish0.5 Mbps, 30 fps, 544x288i . We recruit
12 subjects and carry out 60 sessions in total. In each session, we
randomly select a con�guration and ask the subject to use Smart
Beholder for at most 3 minutes, and then score the preview quality.
8 subjects think static #1 outperforms static #2 in graphics quality ,
and 10 subjects feel static #2 outperforms static #1 in interactivity.
Overall, majority of subjects prefer our preview adaptation algo-
rithm, as summarized in Figure 18. Figures 17 and 18 reveal the
effectiveness of our preview adaptation algorithm in both objective
and subjective metrics.

Energy ef�ciency. We encode the 216-sec preview video at dif-
ferent frame rates using software and hardware encoders on Rasp-
berry Pi. We repeat each experiment 3 times and clear cache each
time for fair comparisons. The average results reported in Table 5
show that using hardware encoder saves at least 86.5% in energy
compared to using software encoder. In addition, we use Power-
Tutor [27] to measure the per-application energy consumption of
Smart Beholder client running on an HTC One X. PowerTutor is
a popular measurement tool for energy consumption on Android
devices. Smart Beholder client averagely consumes about 0.97 W
and the LCD display alone is responsible for 0.89 W. This shows
that Smart Beholder client is energy ef�cient.

9. CONCLUSION
In this paper, we have proposed an open-source smart lens plat-

form called Smart Beholder, which is designed with three ob-
jectives in mind: cost effectiveness, low latency, and high pre-

Table 5: The Energy Consumption of Beholder Server
Frame Rate S/W Encoder H/W Encoder Saving of H/W Encoder

30 fps 883.44 J 104.98 J 88.1%
20 fps 530.06 J 71.50 J 86.5%
15 fps 421.63 J 42.55 J 89.9%
10 fps 304.78 J 28.51 J 90.6%
5 fps 176.04 J 18.36 J 89.6%

view quality. We have designed, implemented, and evaluated
Smart Beholder using off-the-shelf components. Several opti-
mization techniques have been proposed and implemented in this
paper. We have compared the performance of Smart Beholder
against two commercial smart lens products, and we have found
that Smart Beholder achieves lower bitrate, lower latency, slightly
higher frame rate, and better preview quality. Our measurement
methodology presented in this paper is useful when more com-
mercial smart lenses hit the market. Smart Beholder is released
at http://www.smartbeholder.org , and can be leveraged
by researchers and developers for real experiments to quantify the
performance resulted by different design alternatives. We believe
that Smart Beholder will lead to optimized smart lenses and other
real-time video streaming systems in the future.

Acknowledgements
This work was partially supported by the Ministry of Science and
Technology (MOST) of Taiwan under the grants: 103-2221-E-001-
023-MY2, 103-2221-E-019-033-MY2, and 102-2221-E-007-062-
MY3.

References
[1] 5 areas where cameras still beat smartphones if you want great photo

quality. http://tinyurl.com/n8f5w8d .
[2] Altek Cubic web page.http://www.altek.com.tw/cubic/ .
[3] Banana pi, 2014.http://www.bananapi.org/ .
[4] R. Baratto, L. Kim, and J. Nieh. Thinc: a virtual display architecture

for thin-client computing. InProc. of ACM Symposium on Operating
Systems Principles(SOSP'05), pages 277–290, Brighton, UK, Oct
2005.

[5] S. Chandra, J. Boreczky, and L. Rowe. High performance many-
to-many Intranet screen sharing with DisplayCast.ACM Transac-
tions on Multimedia Computing, Communications, and Applications,
10(2):19:1–19:22, Feb 2014.

[6] Y. Chang, P. Tseng, K. Chen, and C. Lei. Understanding theper-
formance of thin-client gaming. InProc. of IEEE International
Conference on Communications Quality and Reliability Workshop
(CQR'11), pages 1–6, Naples, FL, May 2011.

[7] K. Chen, Y. Chang, H. Hsu, D. Chen, C. Huang, and C. Hsu. On the
quality of service of cloud gaming systems.IEEE Transactions on
Multimedia, 16(2):480–495, Feb 2014.

[8] M. Claypool, D. Finkel, A. Grant, and M. Solano. Thin to win? net-
work performance analysis of the OnLive thin client game system. In
Proc. of ACM Workshop on Network and Systems Support for Games
(NetGames'12), pages 1–6, Venice, Italy, Nov 2012.

[9] D. Z. Cook. Advanced Dungeons & Dragons-Player's Handbook.
TSR, 1989.

[10] Digital camera resolution test procedures. http://www.
gpsinformation.org/jack/photo-test/pics/
lens-tests.html .

[11] DSC-QX100 lens-style camera with 1.0-type sen-
sor. http://www.sony.co.uk/electronics/
cyber-shot-compact-cameras/dsc-qx100 .

[12] M. Farooq and T. Kunz. Wireless multimedia sensor networks
testbeds and state-of-the-art hardware: A survey. InCommunication
and Networking, volume 265 ofCommunications in Computer and
Information Science, pages 1–14. Springer Berlin Heidelberg, 2012.

[13] Gaikai web page.http://www.gaikai.com/ .

[14] Global digital camera market decline slowing down in 2014,predicts
new report.http://iphone.tmcnet.com/news/2014/02/
07/7667425.htm .

[15] M. Halpern and L. Humphreys. Iphoneography as an emergentart
world. SAGE New Media and Society, 2014.

[16] Y. He, K. Fei, G. Fernandez, and E. Delp. Video quality assessment
for Web content mirroring. InProc. of Imaging and Multimedia An-
alytics in a Web and Mobile World, pages 90270C–1–90270C–8, San
Francisco, CA, Mar 2014.

[17] H. Hong, C. Hsu, T. Tsai, C. Huang, K. Chen, and C. Hsu. En-
abling adaptive cloud gaming in an open-source cloud gaming plat-
form. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, Jun 2015. Accepted to appear.

[18] C. Hsu, T. Tsai, C. Huang, C. Hsu, and K. Chen. Screencastdissected:
Performance measurements and design considerations. InProc. of
ACM Conference on Multimedia Systems (MMSys'15), pages 177–
188, Portland, OR, Mar 2015.

[19] C. Huang, K. Chen, D. Chen, H. Hsu, and C. Hsu. GamingAny-
where: The �rst open source cloud gaming system.ACM Transac-
tions on Multimedia Computing, Communications, and Applications,
10(1):36–47, Jan 2014.

[20] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi. Cap-
probe: A simple and accurate capacity estimation technique. In Proc.
of SIGCOMM'04, pages 67–78, Portland, OR, Aug 2004.

[21] H. Lagar-Cavilla, N. Tolia, E. de Lara, M. Satyanarayanan, and
D. O'Hallaron. Interactive resource-intensive applications made easy.
In Proc. of the ACM/IFIP/USENIX International Conference on Mid-
dleware (Middleware'07), pages 143–163, Newport Beach, CA, Nov
2007.

[22] A. Lai and J. Nieh. On the performance of wide-area thin-client com-
puting. ACM Transactions on Computer Systems, 24:175–209, May
2006.

[23] D. M. Leenaerts and W. M. V. Bokhoven.Piecewise linear modeling
and analysis. Kluwer Academic Publishers, 1998.

[24] M. Li, M. Claypool, and R. Kinicki. Wbest: a bandwidth estimation
tool for ieee 802.11 wireless networks. InProc. of IEEE Conference
on Local Computer Networks (LCN'08), pages 374–381, Montreal,
Canada, Oct 2008.

[25] Linux UVC driver and tools. http://www.ideasonboard.
org/uvc/ .

[26] OnLive web page, 2014.http://www.onlive.com/ .
[27] PowerTutor. http://ziyang.eecs.umich.edu/

projects/powertutor/ .
[28] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell.

Pathchirp: Ef�cient available bandwidth estimation for network paths.
In Proc. of Passive and Active Monitoring Workshop (PAM'03), vol-
ume 4, San Diego, CA, Apr 2003.

[29] M. Richardson and S. Wallace.Getting Started with Raspberry Pi.
"O'Reilly Media, Inc.", 2012.

[30] Sl10 smart lens camera sl10.http://kodakcamera.jkiltd.
com/Americas/cameras/smartlens/sl10.php .

[31] N. Tolia, D. Andersen, and M. Satyanarayanan. Quantifying interac-
tive user experience on thin clients.Computer, 39(3):46–52, 2006.

[32] Ubitus web page.http://www.ubitus.net .
[33] K. Wac. Smartphone as a personal, pervasive health informatics ser-

vices platform: Literature review.IMIA Yearbook 2012: Personal
Health Informatics, 7(1):83–93, 2012.

[34] Worldwide smartphone shipments top one billion units forthe �rst
time, according to IDC.http://www.idc.com/getdoc.jsp?
containerId=prUS24645514 .

[35] S. Yang, J. Nieh, M. Selsky, and N. Tiwari. The performance of
remote display mechanisms for thin-client computing. InProc. of
USENIX Annual Technical Conference (ATC'02), pages 131–146,
Monterey, CA, Jun 2002.

[36] S. Yoon, H. Oh, D. Lee, and S. Oh. Virtual lock: A smartphone
application for personal surveillance using camera sensor networks.
In Proc. of IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA'11), pages 77–82,
Toyama, Japan, Aug 2011.

