
1

Toward an Adaptive Screencast Platform: Measurement and
Optimization

CHIH-FAN HSU, Academia Sinica, Taiwan

CHING-LING FAN, National Tsing Hua University, Taiwan

TSUNG-HAN TSAI, Academia Sinica, Taiwan

CHUN-YING HUANG, National Chiao Tung University, Taiwan

CHENG-HSIN HSU, National Tsing Hua University, Taiwan

KUAN-TA CHEN, Academia Sinica, Taiwan

The binding between computing devices and displays is becoming dynamic and adaptive, and screencast
technologies enable such binding over wireless networks. In this article, we design and conduct the �rst
detailed measurement study on the performance of the state-of-the-art screencast technologies. Several
commercial and one open-source screencast technologies are considered in our detailed analysis, which

leads to several insights: (i) there is no single winning screencast technology, indicating room to further
enhance the screencast technologies, (ii) hardware video encoders signi�cantly reduce the CPU usage at
the expense of slightly higher GPU usage and end-to-end delay, and should be adopted in future screencast

technologies, (iii) comprehensive error resilience tools are needed as wireless communication is vulnerable
to packet loss, (iv) emerging video codecs designed for screen contents lead to better Quality of Experience
(QoE) of screencast, and (v) rate adaptation mechanisms are critical to avoiding degraded QoE due to
network dynamics. As a case study, we propose a non-intrusive yet accurate available bandwidth estimation

mechanism. Real experiments demonstrate the practicality and e�ciency of our proposed solution. Our
measurement methodology, open-source screencast platform, and case study allow researchers and developers
to quantitatively evaluate other design considerations, which will lead to optimized screencast technologies.

Categories and Subject Descriptors: H.5 [Information Systems Applications]: Multimedia Information
Systems

General Terms: Design, Measurement

Additional Key Words and Phrases: Live video streaming, real-time encoding, performance evaluation, per-
formance optimization

ACM Reference Format:

C. Hsu, 2015. Toward an Adaptive Screencast Platform: Measurement and Optimization ACM Trans. Mul-

timedia Comput. Commun. Appl. 7, 3, Article 1 (August 2015), 23 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Wide adoption of heterogeneous computing devices, such as PCs, tablets, smart TVs,
and smartphones, urges diverse ways for people to share photos, watch videos, and
play games with their family and friends. Most people prefer to use larger or even

Author’s address: C.-F Hsu, T.-H Tsai, K.-T. Chen, 128 Academia Road, Section 2, Nankang, Taipei
11574; email:hsuchihfan@gmail.com, zark912@iis.sinica.edu.tw, swc@iis.sinica.edu.tw; C.-F Fan, C.-H.
Hsu, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013; email: yyytr7180@hotmail.com,
chsu@cs.nthu.edu.tw; C.-Y. Huang, 1001 University Road Hsinchu, Taiwan 30010; email:
chuang@cs.nctu.edu.tw. This work was supported in part by the Ministry of Science and Technology
of Taiwan under the grants 103-2221-E-001-023-MY2, 102-2221-E-007-062-MY3, and 103-2221-E-019-033-
MY2.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
c 2015 ACM. 1551-6857/2015/08-ART1 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:2 C. Hsu et al.

multiple screens to share contents instead of limiting to a single screen. Ubiquitous
displays are therefore gradually deployed in homes, schools, of�ces, shops, and even
outdoor squares for experience sharing, educations, presentations,and advertisements.
According to market research reports, the global �exible display market is expected
to worth $3.89 billion by 2020, growing with high Compound Annual Growth Rate
(CAGR) from 2014 to 2020 [Markets 2014]. Moreover, wireless networks have surged
in popularity. Featuring displaying screen contents without cable connections to com-
puting devices, wireless displays are expected to grow at a CAGR of 28.03% from 2012
to 2017 [Markets 2012]. These reports show that the binding between computing de-
vices and displays becomes more dynamic, leading to �exible and diverse displaying
experience.

Such dynamic binding of displays and computing devices can be done via screen-
cast, which refers to capturing and sending the audiovisual streams from computing
devices over networks to displays in real time. Screencast enables many usage sce-
narios, including playing multimedia contents over home networks, sharing desktops
among colleagues over the Internet, and extending the small built-in displays of mo-
bile and wearable devices over short-range wireless networks, such as Wi-Fi networks.
Screencast has attracted serious attention from both the academia and industry be-
cause of its rich usage scenarios. For example, several open-source projects [Huang
et al. 2014; Chandra et al. 2014] have been initiated to support screencast among
wearable and mobile devices as well as desktops, tablets, and laptop computers. There
are also proprietary and closed commercial products, such as AirPlay [AirPlay 2014],
Chromecast [Chromecast Web Page 2014], Miracast [Miracast 2014], MirrorOp [Mir-
rorOp Web Page 2014], and Splashtop [Splashtop 2014]. Although screencast is grad-
ually getting deployed, the performance measurements on the state-of-the-art screen-
cast technologies have not been rigorously considered in the literature. Current and
future developers and researchers, therefore, have to resort to heuristically making
the design decisions when building screencast technologies.

In this article, we �rst construct a real testbed to conduct the very �rst set of de-
tailed experiments to quantify the performance of various screencast technologies un-
der diverse conditions. The conditions are captured by several key parameters, includ-
ing resolution, frame rate, bandwidth, packet loss rate, and network delay. The per-
formance metrics include video bitrate, video quality, end-to-end latency, and frame
loss rate. We evaluate �ve commercial products [AirPlay 2014; Chromecast Web Page
2014; Miracast 2014; MirrorOp Web Page 2014; Splashtop 2014] and an open-source
solution [GamingAnywhere Web Page 2013]. The commercial products are treated as
black boxes and general measurement methodologies are developed to compare their
performance in different aspects. The open-source solution is a cloud gaming platform,
called GamingAnywhere (GA) [Huang et al. 2014; GamingAnywhere Web Page 2013].
GA works for screencast, because cloud gaming is an extreme application of screencast,
which dictates high video quality, high frame rate (in frame-per-second, fps), and low
interaction latency [Chen et al. 2014]. Nevertheless, using GA as a general screencast
technology leaves some room for optimization, e.g., it is well-known that popular video
coding standards, such as H.264 [Wiegand et al. 2003], are designed for natural videos
and may not be suitable to screen contents, also known as compound images, which
are combinations of computer-generated texts and graphics, rendered 3D scenes, and
natural videos [Zhu et al. 2014].

Fortunately, GA [Huang et al. 2014; GamingAnywhere Web Page 2013] is extensi-
ble, portable, con�gurable, and open. Therefore, developers and researchers are free
to use GA for systematic experiments to make design decisions for optimized screen-
cast. In this article, we design and conduct several such experiments, e.g., we integrate
GA with emerging video codecs [x264 Web Page 2012; HEVC Test Model 2014] in or-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:3

der to conduct a user study using a real screencast setup to quantify the gain of new
video codecs. Our sample experiments reveal the potential of using GA for screencast
research and developments. More importantly, we demonstrate how to measure the
performance of screencast technologies, and how to quantify the pros/cons of different
screencast technologies. The screencast measurement setup and design are, therefore,
useful on their own rights, because they have not been reported in the literature.
One common weakness of the state-of-the-art open-source screencast technologies,
GA [Huang et al. 2014; GamingAnywhere Web Page 2013], lack of bitrate adaptation
feature, which signi�cantly degrades user experience. To address this limitation, we
develop and implement rate adaptation mechanism in GA, which uses video packets
to estimate the available bandwidth and adjusts the streaming rate accordingly. The
enhanced GA incurs no network estimation overhead and reacts to network dynamic
promptly. Evaluation results show that the proposed rate adaptation mechanism is
effective and ef�cient.

The preliminary version of the current article was published in Hsu et al. [Hsu et al.
2015], which contains extensive measurement studies leading to various insights on
optimization room of screencast technologies. The main �ndings are as follows.

� Considering diverse usage conditions and performance metrics, there is no single
winning screencast technology, which indicates that there is still room to optimize
the state-of-the-art screencast technologies in the coming years.

� Hardware video encoders signi�cantly reduce the CPU usage at the screencast
senders, and slightly increase the GPU usage and end-to-end latency; hence are suit-
able to screencast technologies.

� One way to better adapt to nonzero packet loss rate is to employ the reliable TCP
protocol, but TCP protocol does not work well when network latency is long, which
is inline with [Calagari et al. 2014]. Therefore, more comprehensive error resilience
tools are desired.

� Screen contents are fairly different from natural videos, and adopting emerging video
codecs designed for screen contents in screencast technologies leads to better Quality
of Experience (QoE).

In the current article, we make the following new contributions on optimizing screen-
cast technologies.

� We design a new, non-intrusive available bandwidth estimator for short-range Wi-Fi
networks, which are the most popular networks used in screencast scenarios.

� We propose, implement, and evaluate a practical bitrate adaptation algorithm based
on the proposed available bandwidth estimation.

� We conduct extensive experiments on the GA platform and the bitrate adaptation
algorithm to show the merits and practicality of the proposed solutions.

The article is organized as follows. We review the literature in Section 2. We cus-
tomize GA to be a more �exible platform for screencast in Section 3. This is followed by
the detailed measurement methodology given in Section 4. We present the GA-based
quantitative evaluations and user studies, and we discuss the design considerations
for future screencast technologies in Section 5. Section 6 details a rate adaptation
mechanism developed by us. Section 7 concludes this paper. In addition, due to the
space limitation, we give the measurement results of the state-of-the-art screencast
technologies in Appendix B.

2. RELATED WORK

In this section, we survey the literature in the following two directions: (i) screen shar-
ing systems and (ii) performance measurements of screencast platforms. We summa-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:4 C. Hsu et al.

Table I. The Comparisons Among Related Work

Related Systems Work Real-time
Designed for
Screencast

General Wi-Fi
Support

802.11n
Support

Rate
Adaptation

Our Work X X X X X

[Chandra et al. 2014] X X X

[Lin et al. 2012] X X X

[Javadtalab et al. 2015] X X

[Hong et al. 2015] X X

rize the major differences between related work and our current work in Table I. We
also describe prior work on available bandwidth estimation and rate adaptation in
Appendix A (due to the space limitations).

2.1. Screen Sharing Systems

Early screen sharing systems, such as thin clients [Schmidt et al. 1999; Baratto et al.
2005] and remote desktops [Richardson et al. 1998; Cumberland et al. 1999], allow
users to interact with applications running on remote servers. These screen sharing
systems focus on developing protocols that ef�ciently update changed regions of the
screens, rather than achieving high visual quality and frame rate, and thus are less
suitable to highly-interactive applications, such as computer gaming as reported in
Chang et al. [Chang et al. 2011]. Interested readers are referred to the surveys [Yang
et al. 2002; Lai and Nieh 2006] on these screen sharing systems. To cope with such lim-
itations, several companies offer video streaming based cloud gaming systems, such as
OnLive [OnLive Web Page 2012], GaiKai [GaiKai Web Page 2012], and Ubitus [Ubi-
tus Web Page 2014]. Huang et al. propose GamingAnywhere (GA) [Huang et al. 2014],
which is the �rst open-source cloud gaming system. These cloud gaming platforms
also work for screencast scenarios, although there are some optimization room to ex-
plore. Chandra et al. [Chandra et al. 2012; Chandra et al. 2014] develop DisplayCast
that shares multiple screens among users in an Intranet, where the networking and
computation resources are abundant. DisplayCast consists of several components, in-
cluding the screen capturer, zlib-based video compression, and service discovery, but it
lacks of rate control mechanisms. Wi-Fi displays are studied more recently, e.g., Zhang
et al. [Zhang et al. 2015] conduct a measurement study on the power consumption of
Wi-Fi displays. They model the power consumption of several components separately,
including network transmission and codec operations. They then propose optimization
mechanisms, such as: (i) adaptive video tail cutting for a better tradeoff between the
graphics quality and energy consumption and (ii) energy ef�cient channel selection.
Huang et al. [Huang et al. 2015] develop an open-source smart lens that allow users
to preview the captured video on their smartphones via wireless networks. They use
the QoE model to enhance the user experience and propose bandwidth estimation for
single-hop Wi-Fi networks, but the estimation approach assumes (less realistic) static
Wi-Fi networks.

We note that we choose GA [Huang et al. 2014] over DisplayCast [Chandra et al.
2012; Chandra et al. 2014] as the tool to assist design decisions for several rea-
sons, including: (i) GA focuses on the more challenging audiovisual streaming, (ii)
GA is arguably more extensible and portable, and (iii) GA has a more active com-
munity [GamingAnywhere Web Page 2013]. Nonetheless, readers who prefer to start
from DisplayCast [Chandra et al. 2012; Chandra et al. 2014] can apply the lessons
learned in this article to DisplayCast as well. Last, a preliminary version of the article
is published in Hsu et al. [Hsu et al. 2015]. The current article contains elaborated
discussion, additional experiments, and a new rate adaptation mechanism.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:5

2.2. Performance Measurement of Screencast Platforms

The performance measurements of screen sharing and cloud gaming systems have
been done in the literature. For example, Tolia et al. [Tolia et al. 2006] and Lagar-
Cavilla et al. [Lagar-Cavilla et al. 2007] analyze the performance of VNC (Virtual Net-
work Computing), and Claypool et al. [Claypool et al. 2012] and Chen et al. [Chen et al.
2014] study the performance of cloud games. The performance measurements on the
state-of-the-art screencast technologies, however, have not received enough attention
in the research community. He et al. [He et al. 2014] conduct a user study on Chrome-
cast [Chromecast Web Page 2014] with about 20 participants to determine the user
tolerance thresholds on video quality (in PSNR [Wang et al. 2001]), rendering quality
(in frame loss rate), freeze time ratio, and rate of freeze events. The user study is done
using a Chromecast emulator. Their work is different from ours in several ways: (i)
we also consider the objective performance metrics, (ii) we use real setups for exper-
iments, (iii) we consider multiple screencast technologies [AirPlay 2014; Chromecast
Web Page 2014; Miracast 2014; MirrorOp Web Page 2014; Splashtop 2014; Huang et al.
2014], and (iv) our evaluation results reveal some insights on how to further optimize
the screencast technologies. Moreover, following the methodologies presented in this
paper, researchers and developers can leverage GA to intelligently make design deci-
sions based on quantitative studies.

3. GAMINGANYWHERE AS A SCREENCAST PLATFORM

We investigate the key factors for implementing a successful screencast technology
using GamingAnywhere (GA). GA may not be tailored for screencast yet, e.g., un-
like powerful cloud gaming servers, the computing devices used for screencast may
be resource-constrained low-end PCs or mobile/wearable devices, and thus screencast
senders must be lightweight. Moreover, the screen contents of screencast are quite di-
verse, compared to cloud gaming: text-based contents in word processing, slide editing,
and Web browsing applications are common in screencast scenarios. In this section,
we discuss the customization of GA for screencast, which also enables researchers and
developers to employ GA in performance evaluations to systematically make design
decisions.

3.1. Support of More Codecs

GA adopts H.264 as its default codec. Currently the implementation is based on
libx264 and is accessed via the ffmpeg/libav APIs. However, we found that it is dif-
�cult to integrate other codec implementations into GA following the current design.
For example, if we plan to use another H.264 implementation from Cisco [OpenH264
Web Page 2015], we have to �rst implement it as an ffmpeg/libav module, whereas inte-
grating a new codec into ffmpeg/libav brings extra workload. In addition, ffmpeg/libav’s
framework limits a user to access advanced features of a codec. For example, libx264
allows a user to dynamically recon�gure the codec in terms of, e.g., frame rates, but
currently it is not supported by ffmpeg/libav’s framework. Therefore, we revise the
module design of GA to allow implementing a codec without integrating the codec into
the ffmpeg/libav framework. At the same time, we also migrate the RTSP server from
ffmpeg to live555. As a result, GA now supports a wide range of video codecs that
provide the required Session Description Protocol (SDP) parameters at the codec ini-
tialization phase. A summary of currently supported codecs and the associated SDP
parameters are shown in Table II.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:6 C. Hsu et al.

Table II. Supported codecs and the required SDP parameters

Codec SDP Parameter Description

Vorbis con�guration Codec-speci�c con�gurations, such as
codebooks

Theora width Video width
height Video height
con�guration Codec-speci�c con�gurations, such as

codebooks
H.264 sprop-parameter-sets SPS (Sequence Parameter Set) and

PPS (Picture Parameter Set)
H.265 sprop-vps VPS (Video Parameter Set)

sprop-sps SPS (Sequence Parameter Set)
sprop-pps PPS (Picture Parameter Set)

3.2. Hardware Encoder

Screencast servers may be CPU-constrained, and thus we integrate a hardware en-
coder with GA as a reference implementation. We choose a popular hardware plat-
form, Intel’s Media SDK framework [Intel Web Page 2015], to access the hardware
encoder. The hardware encoder is available on machines equipped with both an Intel
i-series CPU (2nd or later generations) and an Intel HD Graphics video adapter. To
integrate the Intel hardware encoder into GA, we have to provide the sprop-parameter-
sets, which contains the SPS (Sequence Parameter Set) and PPS (Picture Parame-
ter Set) con�gurations of the codec. After the codec is initialized, we can obtain the
parameters from the encoder context by retrieving SPS and PPS as codec param-
eters, i.e., calling MFXVideoENCODE GetVideoParam function with a buffer of type
MFX EXTBUFF CODING OPTION SPSPPS.

The Intel hardware encoder does not support many options. In addition to the setup
of bitrate, frame rate, and GoP size, we use the following default con�gurations for the
codec: main pro�le, best quality, VBR rate control, no B-frame, single decoded frame
buffering, and sliced encoding. We also tried to enable intra-refresh feature, but un-
fortunately this feature is not supported on all of our Intel PCs. We notice that Intel’s
video encoder only supports the NV12 pixel format. Fortunately, it also provides a
hardware-accelerated color space converter. Thus, we can still take video sources with
RGBA, BGRA, and YUV420 formats; the video processing engine �rst converts the in-
put frames into the NV12 pixel format and then passes the converted frames to the
encoder. The CPU load reduction due to the hardware encoder is signi�cant, which we
will show in the experiments in Section 5.

3.3. Emerging Video Codecs

The revised GA design supports the emerging H.265 coding standard. To be integrated
with GA, an H.265 codec implementation has to provide all the three required parame-
ters (VPS, SPS, and PPS, as shown in Table II). We have integrated libx265 [x265 Web
Page 2014] and HEVC Test Model (HM) [HEVC Test Model 2014] with GA. HEVC sup-
ports several emerging extensions like Range Extension (REXT) and Screen Content
Coding (SCC) [Zhu et al. 2014], which are designed for screencast or similar applica-
tions. We note that neither libx265 nor HM are optimized for real-time applications
in our experiments. Longer encoding time, however, is not a huge concern for now, as
both implementations are emerging and we consider that the implementations will be
optimized before actual deployments. Therefore, in Section 5, we evaluate these emerg-
ing codecs, and we focus on their achieved user experience (e.g., graphics quality) by
encoding screen contents without considering their running time.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:7

4. MEASUREMENT METHODOLOGY

In this section, we present the measurement methodology to systematically compare
the state-of-the-art screencast technologies.

4.1. Screencast Technologies

The following �ve commercial screencast technologies are considered in our experi-
ments.

� AirPlay is a proprietary protocol designed by Apple. AirPlay supports streaming au-
dio, video, photos, and meta-data over wireless channels. Computers running iTunes
and devices running iOS 4.2+ can be AirPlay senders, while AirPort Express and
Apple TV can be AirPlay receivers. With iOS 4.3+, third-party apps may send com-
patible audiovisual streams over AirPlay. Besides, there is an open-source imple-
mentation [open-airplay: A collection of libraries for connecting over Apple’s AirPlay
protocol 2014] of the AirPlay protocol, which may turn any computer into an AirPlay
receiver.

� Chromecast is a digital media player which is capable of directly streaming audio-
visual contents via Wi-Fi. For screencast, a user can use Google Cast extension for
Chrome, which uses WebRTC API to transmit screen contents from the Web browser
or desktop to the Chromecast device.

� Miracast is a peer-to-peer wireless standard for screencast over Wi-Fi Direct.
Miracast-compatible devices can serve as Miracast senders and receivers. Existing
OS’s with built-in Miracast support include Android 4.2 or later, BlackBerry 10.2,
and Microsoft Windows 8.1. For streaming screens to a device that does not support
Miracast, there are also Miracast adapters capable of rendering the screens through
HDMI or USB ports.

� MirrorOp and Splashtop offer pure software solutions, which require the users to
install proprietary applications at both the sender and receiver. Although MirrorOp
and Splashtop use closed protocols, the developers offer the applications on multiple
OS’s, including Windows and Mac OS X.

In addition, the open-source GA is evaluated as a screencast technology as well.

4.2. Content Types

We study how the screencast technologies perform when streaming different types of
contents. We consider 9 content types in the following 3 categories:

� Gaming: including �rst-person shooter, racing, and turn-based strategy games.
� Movie/TV: including dialogue movie scene, car chasing movie scene, and talk show.
� Applications: including Google street view browsing, slide editing, and Web sur�ng

in Chrome.

For fair comparisons, we record the screens of different content types into 1280x720
videos. In particular, we extract one minute of representative video for each content
type and concatenate them into a single 9-minute long video. We insert 2-second white
video frames between any two adjacent content types to reset the video codecs. In this
way, the measurement results collected from adjacent content types do not interfere
one another.

4.3. Workload and Network Conditions

We also study how the screencast performance is affected under different workload set-
tings and network conditions, which we believe impose direct and non-trivial impacts
on screencast quality. Workload parameters are related to the quality of source videos,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:8 C. Hsu et al.

Table III. The Considered Parameters

Parameter Value

Workload
Frame rate 15 fps 30 fps 60 fps
Resolution 640x360 896x504 1280x720

Network
Bandwidth 4 Mbps 6 Mbps Unlimited
Delay 200 ms 100 ms 0 ms
Packet loss rate 2% 1% 0%

Table IV. Screencast Technologies Considered

Technology AirPlay Chromecast GamingAnywhere Miracast MirrorOp Splashtop

Spec.

Product Apple TV Chromecast GamingAnywhere NETGEAR PTV3000 Sender/Receiver Streamer/Client
HW/SW Hardware Hardware Software Hardware Software Software
Connectivity AP AP AP Wi-Fi Direct AP/Internet AP/Internet
Protocol TCP UDP UDP/TCP UDP TCP TCP

Devices
Sender

MacBook Pro
OS X 10.9.2

Chrome w/ Google
Cast v14.305.0.0
on Win 8.1 Laptop

Win 8.1 Laptop Win 8.1 Laptop
Sender
v2.0.3.2 on Win
8.1 Laptop

Streamer
v2.5.8.4 on Win
8.1 Laptop

Receiver
Apple TV
v6.1.1

Chromecast
(�rmware v16041)

Win 7 PC
NETGEAR Push2TV
(�rmware v2.4.46)

Receiver
v0.2.11-4.win
on Win 7 PC

Personal
v2.4.5.2
on Win 7 PC

z If not otherwise speci�ed, the PC computer is a ThinkCentre M92p, and the laptop computer
is a ThinkPad X240.

including frame rate and resolution. We change the frame sampling rates to generate
multiple videos, and set 30 fps as the default frame rate. We also vary the resolutions
at 1280x720, 896x504, and 640x480. For the latter two cases, we place the video at the
center of the (larger) screen without resizing it. This is because we believe image resiz-
ing would cause loss of details and therefore bias our results. As to network conditions,
we use dummynet1 to control the bandwidth, delay, and packet loss rate (packet loss) of
the outgoing channel of senders. The default bandwidth is not throttled, the delay is 0
ms, and the packet loss rate is 0%.

In our experiments, a parameter of workload and network conditions is varied while
all other parameters are �xed at their default values. The list of parameters is given
in Table III, with the respective default values in boldface. For screencast technologies
that support both UDP and TCP protocols, the default protocol is UDP.

4.4. Experiment Setup

There are several components in the experiment: a sender and a receiver for each
screencast technology, and a Wi-Fi AP, which is mandatory for all technologies except
Miracast (based on Wi-Fi Direct). The speci�cations of the screencast technologies are
summarized in Table IV, and the detailed experiment setups are given below.

� AirPlay. The sender is a MacBook Pro running OS X 10.9.2, with a 2.4 GHz Intel
Core i5 processor and 8 GB memory, while the receiver is an Apple TV. They are
connected to the same Wi-Fi AP before the sender can discover, connect, and stream
screens to the receiver.

� Chromecast. The sender is a Lenovo ThinkPad X240 notebook running Windows
8.1, with an 2.6 GHz Intel Core i5 processor and an 8 GB memory with a receiver
that is a Chromecast dongle. The only way for screencasting using Chromecast is by
Google Cast Chrome Extension. Once the sender is connected to the Wi-Fi AP, it can
discover and connect to any available devices in the same Wi-Fi network.

� Miracast. We use the Lenovo notebook as the sender. For the receiver, we use a NET-
GEAR Push2TV Miracast adapter. Miracast is based on Wi-Fi Direct and supported
by Windows 8.1. As long as the receiver is placed within the wireless transmission

1dummynet is a network emulation tool, initially designed for testing networking protocols. It has been used
in a variety of applications, such as bandwidth management.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

Toward an Adaptive Screencast Platform: Measurement and Optimization 1:9

range of the sender, Windows 8.1 provides a simple user interface for screencasting
the sender’s desktop to the receiver.

� MirrorOp and Splashtop. The Lenovo notebook serves as the sender, while a PC
running Windows 7, with an Intel Core i7 processor serves as the receiver. To use
these two services, a user needs to create an account, and run the sender and receiver
programs on the respective machines. Once both machines are logged in, they can
discover and connect to each other.

In addition, experiments on GA are also conducted using the same setup as Mirro-
rOp and Splashtop. We note that there may be multiple implementations for certain
technologies, e.g., Miracast, but we cannot cover all the implementations in this work.
We pick a popular implementation for each technology, and detail the measurement
methodology so that interested readers can apply the methodology to other implemen-
tations.

4.5. Performance Metrics

We measure the following performance metrics that are crucial to screencast user ex-
perience.

� Bitrate. The average amount of data per second transmitted from the sender to
receiver, which is important because the wireless spectrum and total bandwidth is
limited and shared by all applications/users.

� End-to-end latency (latency). The time difference between each video frame is ren-
dered at the sender and at the receiver, which is especially important for interactive
applications. The user experience also drops if the latency jitter (i.e., the variation of
latency) is high.

� Frame loss rate (frame loss). The fraction of video frames that are not rendered at
the receiver, which greatly affects the viewing experience.

� Video quality (quality). The video quality rendered at the receiver compared to
the original video captured at the sender. We use PSNR [Wang et al. 2001] and
SSIM [Wang et al. 2004] to quantify the video quality observed at the receiver.

When presenting the measurement results, 95% con�dence intervals of the averages
are given as error bars in the �gures whenever applicable.

4.6. Experiment Procedure

For each technology, we �rst connect the sender and receiver, play the video with di-
verse content types at the sender, and measure the four performance metrics. We re-
peat the experiment ten times with each con�guration (i.e., workload and network
parameters). To facilitate our measurements, we have added a unique color bar at the
top of each frame of the source contents as their frame id, which can be programmati-
cally recognized (c.f., Figure 1(c)).

To measure the bitrate used by the screencast technologies, we run a packet ana-
lyzer at the sender to keep track of the outgoing packets during the experiments. For
measuring the video quality, we direct the HDMI output of the receiver to a PC, which
is referred to as the recorder. The recorder PC is equipped with an Avermedia video
capture card to record the videos. To quantify the quality degradation, each frame of
the recorded video is matched to its counterpart in the source video, using the frame
id. Last, we calculate the PSNR and SSIM values as well as the frame loss rate by
matching the frames. This setup is illustrated in Figure 1(a).

To measure the user-perceived latency, we direct the rendered videos of both the
sender and receiver to two side-by-side monitors via HDMI (for the sake of larger dis-
plays). We then set up a Canon EOS 600D camera to record the two monitors at the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Article 1, Publication date: August 2015.

1:10 C. Hsu et al.

�����

�����	�
��

	
����

��

��

��	
���

�

�
��

��
�

������
���

������
��
������
��

 ��!��"�#
	�!���$

%��������&�'() *&�+

��
,��-�
����
��
,��������
��

����	����.��

(a)

�����

�����	�
��

����
�
�����

�	

���

�

����	�

������������������

������

��
���
�
��	��

 �� � �
 � �� �
�

�

(b)

(c)

Fig. 1. Experiment setup for: (a) bitrate/video quality and (b) latency; (c) actual testbed for latency mea-
surements in our lab.

same time, as shown in Figure 1(c). To capture every frame ren dered on the monitors,
we set the recording frame rate of the camera to 60 fps, which e quals to the highest
frame rate in our workload settings. The recorded video is th en processed to compute
the latency of each frame, by matching the frames based on fra me ids and by compar-
ing the timestamps when the frame is rendered by the sender an d receiver. The setup
is shown in Figure 1(b).

Last, we note that we had to repeat each experiment twice: onc e for bitrate and
video quality (Figure 1(a)), and once for the latency (Figur e 1(b)). This is because each
receiver only has a single HDMI output, but the two measuremen t setups are quite
different. Fortunately, our experiments are highly automa ted in a controlled environ-
ment, thus our experiment results are not biased. The actual testbed is shown in Fig-
ure 1(c).

5. DESIGN CONSIDERATIONS

Our performance evaluations on screencast technologies gi ven in Appendix B lead to
two main observations: (i) screencast technologies all hav e advantages and disadvan-
tages and (ii) deeper investigations to identify the best de sign decisions are crucial.
In this section, we present a series of GA-based experiments to analyze several de-
sign considerations. We emphasize that our list of design co nsiderations is not ex-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 7, No. 3, Art icle 1, Publication date: August 2015.

