
On Additive and Multiplicative QoS-QoE Models for Multiple QoS Parameters

Tobias Hoßfeld1†, Lea Skorin-Kapov2‡ , Poul E. Heegaard3, Martı́n Varela4, Kuan-Ta Chen5

1University of Duisburg-Essen, Modeling of Adaptive Systems, Germany
2 University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

3 NTNU, Norwegian University of Science and Technology, Norway
4 VTT Technical Research Centre of Finland — Communication Systems, Finland

5 Institute of Information Science, Academia Sinica, Taiwan

Abstract
Generic relationships between QoE and QoS have been inten-
sively discussed in literature for single QoS parameters and of-
ten found to be logarithmic or exponential. While there are
many experimental studies investigating statistically the influ-
ence of several parameters on QoE, the generic relationship be-
tween them, and how to best model it, have not been discussed
so far. For communication networks, however, there is a major
interest from different stakeholders to have multi-dimensional
QoE models. The contribution of this paper is an analysis of the
generic relationship between QoS and QoE for multiple QoS
parameters and its implications. We address the question of
whether multi-dimensional QoE models for several parameters
are additive or multiplicative. In an analytic model and with
examples involving HTTP non-adaptive video streaming, we
show that a multiplicative model has different properties than
the current additive QoE model proposed in ITU-T standards.
We want to raise sensitivity in the community on multi-factor
QoE models, their properties, and the need for multi-factor stud-
ies to confirm the appropriate models.

1. Introduction
The notion of Quality of Experience (QoE) has been widely
accepted as a multidimensional concept influenced by a num-
ber of system, user, and context factors [1]. From a network
or service provider’s point of view, it is important to under-
stand the relationships between QoE and underlying network
and application-layer Quality of Service (QoS) parameters, thus
providing the input for successful QoE management. As such,
QoS parameters represent one of the most business-relevant pa-
rameters for network and service providers [2].

In general, QoE can be characterized by a function, which
maps the impact of influence factors onto the quality perceived
by the end user. Typical mapping functions between QoS pa-
rameters (at the network and application level) have been found
to be exponential functions because of underlying fundamen-
tal logarithmic relationships, which is a result of the Weber-
Fechner law, and was successfully applied in [3, 4]. The user’s
sensitivity is caused by the perception abilities of the human
sensory system (“just noticeable difference”), while the QoS pa-
rameter reflects a certain stimulus (e.g., waiting times) which is
perceived by the human.
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In contrast, the IQX hypothesis [5, 6] postulates an expo-
nential relationship between QoE and QoS. Thereby, the QoS
parameter x quantifies a certain degradation (e.g., stalling as an
application-layer QoS parameter in the case of HTTP stream-
ing [7], or packet loss as a network-layer QoS parameter in the
case of VoIP [5]). The exponential relationship models a linear
relationship between the user’s sensitivity to QoE and the ac-
tual level of QoE. This leads to a differential equation which is
solved as an exponential function.

Due to the complexity of conducting subjective studies with
multiple parameter manipulations, available QoE models to a
large extent address the relationships between QoS and QoE
focusing on the impact of a single QoS parameter. Taking as
an example QoE modeling for HTTP-based video streaming,
we note that while a number of proposals exist which model
QoE as a function of a single parameter (stalling/re-buffering
or initial start-up delay), the question arises how to model the
joint impact of multiple QoS parameters on QoE. As a result,
the currently available ITU-T Recommendation P.1201 (amd.
2) [8] suggests the use of an additive model whereby degra-
dations resulting from stalling and initial delay are subtracted
from a maximum Mean Opinion Score (MOS). The impact of
stalling is defined as in [7] following the IQX hypothesis.

This contribution addresses the following question: given
empirically derived quality models Q1(x1) and Q2(x2) (each
modeling QoE as a function of a single influence factor x1 and
x2, respectively), and knowing that Q1 follows the IQX hy-
pothesis, what is the generic structure of a combined model
Q(x1, x2)? Is it additive or multiplicative?

In this paper we present a theoretical analysis of a combined
generic QoE model which considers multiple QoS parameters,
illustrated by a numerical example involving HTTP-based video
streaming, In an analytic model and with numerical examples
involving HTTP-based video streaming, we show that a multi-
plicative model has different properties as the current additive
QoE model proposed in ITU-T standards. Therefore, it is essen-
tial to conduct multi-factor subjective studies in order to confirm
that one is better than the other.

2. Background and Related Work
QoE can conceptually be characterized by a function mapping
the impact of n influence factors onto the quality perceived by
the end user. If we denote influence factors as xi, a math-
ematical expression of the function is as follows: QoE =
f(x1, x2, . . . , xn).

A general approach to the systematic identification of QoE
influence factors is proposed in [9], where QoE factors are cat-



egorized into multidimensional IF spaces and further mapped
to multiple perceivable quality dimensions. When multiple fac-
tors are considered, multidimensional analysis techniques (e.g.,
Principal Component Analysis, regression techniques) may be
used to identify and analyze their impact on QoE (e.g., [10,11]).
A key challenge is understanding the fundamental relationships
between multiple QoE influence factors and QoE itself. In the
following sections we give a brief overview of related work ad-
dressing both additive and multiplicative models, which in cer-
tain cases (such as for video streaming) may result in comple-
mentary approaches. We also note that models based on various
machine learning approaches and neural networks also repre-
sent a common approach to QoE modeling, whereby the under-
lying relationships remain hidden.

2.1. Additive models

The E-model [12] is a commonly used parametric planning
model for predicting expected speech quality, taking into ac-
count the combined effect of a wide range of impairments
transformed onto a perceptual impairment scale. The under-
lying principle for handling multiple different types of impair-
ments came from the OPINE model proposed by NTT, assum-
ing quality degradation factors are summed on a psychologi-
cal scale [13, 14]. In an extension to the E-Model, studies on
perceived speech quality in cases of random packet loss and
additional network impairments for VoIP again showed impair-
ment additivity, although limited in certain cases (e.g., impair-
ment due to packet loss found to be partially masked by addi-
tional line noise) [15]. As pointed out in [15], from the point
of view of quality perception, impairment additivity implies
distinguishable perceptual features, also referred to orthogo-
nal quality dimensions in a multidimensional perceptual feature
space. Wälterman et al. [10] study quality dimensions related to
speech transmission, and further model integral listening qual-
ity in terms of a weighted linear combination of the identified
dimensions.

For video, bit-stream models are given in the ITU-T P.1202-
series for video quality estimates. In [16], the authors use a log-
logistic model to model various uni-type impairments of net-
work video quality, and propose an additive log-logistic model
for multiple types of impairments. This work has served as a
basis for models given in ITU-T Rec. P.1202.2 [17], whereby
overall video quality is estimated as a weighted linear combina-
tion of different degradations in the form of compression arte-
facts, slicing artefacts, and freezing artefacts. ITU-T Recom-
mendation P.1201 [8] provides models for non-intrusive moni-
toring of audiovisual quality of IP-based video services based
on packet header information and in light of various network
impairments. The models are extended with [8] to be used
for quality predictions of TCP-based, non-adaptive streaming
(progressive download). This amendment suggests the use of
an additive model whereby degradations resulting from stalling
and initial delay are subtracted from a maximum Mean Opin-
ion Score (MOS). More specifically, the recommendation as-
sumes the buffer-related perceptual indicator PBufInd to be
calculated on a 1 to 5 point scale as follows:

PBufInd = 5−max(min(DegStall + DegT0), 4), 0)
(ITU-T model)

i.e., an additive model of impact DegT0 of initial delay T0 and
impact of stalling, where DegStall is defined as in [7] following
the IQX hypothesis.

Studies such as [18], rely on the proposed additive ITU-T
model when modeling QoE for HTTP-based video streaming.

Further studies have also addressed the impact of a wide range
of influence factors on QoE for HTTP video streaming, and pro-
posed an additive weighted average of influence factors. Addi-
tive multidimensional models have also been proposed for other
services such as mobile Web browsing [19].

2.2. Integrating multiplicative terms

While previously mentioned work has focused on additive mod-
els, other studies consider multiplicative models in various ser-
vice scenarios. Studies addressing audiovisual quality have
generally proposed a combination of two dimensions (audio
and video qualities) leading to the following integration model:
MOSAV = αMOSA + βMOSV + γMOSA ∗MOSV +
ζ, where MOSAV refers to overall audiovisual quality and
MOSA and MOSV refer to audio and video quality, respec-
tively. As summarized in [20], subjective tests have shown that
the multiplicative term between audio and video qualities, with
an additive shift, is generally sufficient to estimate audiovisual
quality. This was confirmed in a survey comparing integra-
tion models [21], highlighting also the importance of the MOS
ranges of audio and video qualities.

A generalized MOS estimation function is proposed in [22],
defining MOS as a weighted product of all variable-specific
MOS’ (referring to the MOS’ of individual influence factors)
rather than a weighted sum. The rationale behind this approach
is that the model should effectively reflect the situation when
one variable’s MOS is very low and cannot be compensated by
an improvement of other variables. The authors further propose
a deterministic QoE model where QoE may be calculated based
on multiple QoS factors, with VoIP quality studies confirming
exponential relationships and the potential of combining single
variable equations in a multiplicative way [23].

In [24], the authors go beyond MOS estimation and propose
a Generalized Linear Model to estimate the probabilities of par-
ticular QoE levels based on given QoE influence factors. In this
case, again multiplicative terms between independent variables
are considered.

3. Theoretical Analysis
We consider QoE as a functionQ(x), x = {x1, . . . , xn}which
maps n influence factors x1, . . . , xn on QoE. Depending on the
type of influence factors, the range of a given factor may be
a positive integer (e.g., number of stalls), a positive real num-
ber from a certain range of values (e.g., packet loss ratio from
[0; 1]), or a real value (e.g., jitter).

If we assume that there is a linear relation between the QoE
sensitivity ∂Q(x)

∂xi
of xi and the QoE functionQ(x), then we say

that xi follows the IQX hypothesis in Q(x) [5].
∂Q(x)

∂xi
∝ Q(x) (IQX hypothesis)

For a single QoS parameter x, the IQX yields an exponen-
tial functions; Q(x) = αe−βx when considering normalized
values in the range Q ∈ [0; 1]. The parameter α determines the
maximum MOS value of Qi referred to as a maximum parame-
ter. β determines the degree of the slope of the QoE curve, i.e.
its sensitivity. β is referred to as a sensitivity parameter.

For the sake of simplicity, we only consider two factors
x1 and x2. and their corresponding QoE models Q1(x1) and
Q2(x2). We further assume thatQ1 follows IQX, letQ1(x1) =
αe−βx1 and Q2(x2) be a general QoE function.

All multi-factor QoE models in the following suffer from
the same problem: they strongly depend on weighting factors



that need to be determined by curve fitting based on results from
multi-factorial studies. Such studies are exactly what’s missing.

3.1. Additive QoE Model

The additive model assumes the weighted sum of both influence
factors with some weighting factors wi ≥ 0 and

∑
i wi = 1.

Qa(x1, x2) = w1Q1(x1) + w2Q2(x2) (1)
According to the IQX hypothesis, the sensitivity of QoE de-
pends on the actual QoE value. Therefore, we need to consider
the partial derivative w.r.t. x1.

∂Qa(x1, x2)

∂x1
= −w1βQ1(x1) 6∝ Qa(x1, x2) (2)

Eq.(2) means that the sensitivity of QoE w.r.t x1 does not de-
pend any more on its actual value. Therefore, the additive QoE
model destroys the IQX property, although Q1 follows an ex-
ponential function.

3.2. Multiplicative QoE Model

We consider now a multiplicative QoE model and assume again
normalized QoE values, Qi ∈ [0; 1].

Qm(x1, x2) = α12Q1(x1) ·Q2(x2) (3)
The IQX hypothesis is still valid then for the impairment factor
x1, independent of function Q2, as the QoE sensitivity of xi
depends on the overall value Qm.
∂Qm(x1, x2)

∂x1
= −βαe−βx1Q2(x2) = −βQm(x1, x2) (4)

3.3. Linear Regression QoE Model

A generalization of the additive and multiplicative QoE model
is a linear regression which includes both terms.

Qr(x1, x2) = Qa(x1, x2) +Qm(x1, x2) (5)
Also in this case, the QoE sensitivity of x1 does not depend any
more on the actual QoE value.

3.4. Linear Regression of Impairment Factors

When several impairment factors are influencing the same stim-
uli (or QoE dimension) like stalling, then those impairment
factors may be combined with a linear regression model. For
example, there may be the same underlying cause for stalling
which jointly influences the stalling frequency but also the
stalling duration.

x = v1x1 + v2x2 + v12x1x2 (6)
If the QoE model for the parameter x follows the IQX, then
this results in a multiplicative model (see Section 4.1) and all
parameters xi follow IQX.

3.5. Observation and discussions

The key observation is that if Q(x) follows the IQX hypoth-
esis, then QoE functions should be combined in a multiplica-
tive way. However, in practice, it is not clear which is the best
model Q(x). Therefore, multi-factor experiments are needed
to obtain an appropriate QoE model. The additive or mul-
tiplicative models discussed in this section are only two ex-
amples with very different properties to emphasis the impor-
tance of understanding the underlying mechanisms. A multi-
factor QoE model might need to take into account that (i) im-
pairment factors and their corresponding QoE might be corre-

lated (both cross-correlated and longitudinal over time), (ii) it
has non-additive or non-multiplicative structure, (iii) it changes
over the impairment factor sampling space, e.g., at the extremes
it might be max/min function otherwise an additive or multi-
plicative model. As the number of parameter combinations is
growing for each additional factor xi, sophisticated sampling
strategies and parameter selections are required in the subjec-
tive studies [25], in order to limit the costs for the subjective
studies. The sampling strategies should thereby consider the
models to be tested.

4. Case: HTTP Streaming QoE Model

We apply the analysis from the previous section to a simple ex-
ample involving a QoE model for non-adaptive HTTP stream-
ing. In a Gedankenexperiment, we combine existing QoE mod-
els for stalling as well as for initial delay in an additive and mul-
tiplicative way. This allows to compare a multiplicative QoE
model with the current ITU-T Recommendation advising the
use of an additive model.

4.1. Stalling

The QoE of HTTP streaming depends mainly on the actual
number of stall events N and the average length L of a single
stall event [26]. A QoE model combining both key influence
factors into a single equation QS(L,N) is provided in [7] and
found to follow the IQX hypothesis [5], see Figure 1. The model
provides MOS estimates on a 5-point ACR scale. We normalize
the model into the domain [0; 1] and obtain

QS(N,L) = e−αLN−βN . (7)
By means of linear regression, the stall pattern αLN + βN is
captured as input for the exponential function [7] with N be-
ing the dominant factor; LN captures thereby the total stall du-
ration. Please note that the stall pattern regression is a com-
plementary approach to the linear regression model (Sec. 3.3)
which may allow to combine also different QoE dimensions
(like initial delay vs. service interruption due to stalling); the
stall pattern regression maps several parameters on the same di-
mension (which is the stall pattern here).
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Figure 1: Results from the subjective study [26] lead to expo-
nential fitting functions between MOS and number N of stalls.
Each curve depicts a different average durationL of stall events.
Without stalling, maximum QoE is reached.



4.2. Stalling and Initial Delay

We consider now in addition the impact of initial delays D on
QoE, as derived in [7] with parameters a and b leading to MOS
values in [1; 5] which are again normalized in [0; 1].

QI(D) = −a log10(b ·D + c) (8)
However, since no subjective studies on the joint influence

0 2 4 6 8 10

number of stalls

1

2

3

4

5

M
O

S

 T
0
=0s

 T
0
=5s

T
0
=10s

T
0
=30s

T
0
=60s

(a) Multiplicative model Qm
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Figure 2: Combined QoE model for L = 2 s. The dashed lines
show the upper bound when no stalling occurs, but only initial
delays D are present. The solid curves show the results from
the combined QoE model. For the sake of readability, we use a
commonly used 5-point MOS scale.
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Figure 3: Additive and multiplicative QoE model for L = 2 s in
comparison with the ITU-T model. The dark straight lines show
the upper bound when no stalling occurs, but only initial delays
T0 are present. The solid curves show the results for T0 = 10 s
and the dashed curves for T0 = 60 s, respectively.

are available, we compose the additive and the multiplicative
QoE model based onQI andQS in order tho show the different
behavior, as depicted in Figure 2. Figure 3 shows the results for
the additive and multiplicative QoE model in comparison with
the ITU-T model. It can be seen that the ITU-T model QITU
(as the simple additive model Qa) leads to counter-intuitive re-
sults. Related work [27] shows that initial delays only have
limited impact on QoE – in contrast to stalling. With stalling
being the dominant factor (e.g. [27]), it seems reasonable that
the user’s sensitivity to stalling depends on the actual QoE level.
This is however not true for the additive model and the ITU-T
model. The ITU-T model leads to very optimistic QoE values
in case of low initial delays. The additive model leads to very
pessimistic QoE values in case of high initial delays, potentially
overestimating the impact of the initial delays. The multiplica-
tive model (and the not shown linear regression model) seems
to capture properly the insights from literature - nevertheless,
multi-factor user studies need to demonstrate the applicability
of the model.

5. Concluding remarks
Our aim with this paper is to draw attenttion to multi-factor QoE
models, their properties, and the need for multi-factor studies.
It is not straightforward to combine existing single-parameter
QoE models into a multidimensional QoE model. Thus, the
observations Q1(x1) and Q2(x2) do not allow to constitute
Q(x1, x2) = f(Q1(x1), Q2(x2)).It may be tempting just to
assume an additive model or a multiplicative model for f . How-
ever, the two models lead to strongly different properties.

We provided a concrete example for HTTP video, where
conflicting results exist (e.g. ITU-T standard P.1201 (amd.
2) [8] vs. [7, 18]). We showed that the multiplicative model
will preserve the IQX hypothesis and the assumption that QoE
sensitivity depends on the actual QoE level. The additive model
however destroys the IQX property although this was found in a
subjective study for Q1 (i.e. in which only stalling factors were
varied, but no initial delays). We note, however, that the multi-
factor QoE model cannot be derived from observations Q1 and
Q2. Thus, existing recommendations advocating the use of a
combined additive QoE model when considering multiple QoE
influence parameters should be reconsidered.

There are also more models of course available, e.g. linear
regression w1Q1 + w2Q2 + w12Q1Q2, e.g. f = min, e.g.
numerical approaches based on machine learning, e.g. integra-
tion functions [20], etc. The intention of the paper is to raise
awareness to researchers to investigate the underlying princi-
ples and generic relationships of QoE modeling. This under-
standing of generic relationships is important to make progress
in multi-factor QoE modeling and gain deeper understanding
of the underlying fundamental principles. In order to obtain
a deeper understanding of QoE, we need to go beyond black
box approaches such as basic regressions, fittings, and machine
learning approaches.

In conclusion, subjective tests are clearly required to test
which kind of multi-factor QoE model is appropriate for a given
service scenario. Due to the growth of the parameter space
where each parameter adds one dimension of complexity, it
is required in practice to come up with proper sampling ap-
proaches (e.g. [28]) and parameter selections (e.g., adaptive ap-
proaches in crowdsourcing [25]). This is another relevant di-
rection for future work, as the sampling approaches or adaptive
CS may consider the underlying model in order to come to an
efficient implementation of the test design.
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