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Abstract—We study an optimization problem to maximize the
cloud gaming provider’s total profit while achieving just-good-
enough Quality-of-Experience (QoE). We conduct measurement
studies to derive the QoE and performance models. We formulate
and optimally solve the problem. The optimization problem has
exponential running time, and we develop an efficient heuristic
algorithm. We also present an alternative formulation and algo-
rithms for closed cloud gaming services, in which the profit is
not a concern and overall gaming QoE needs to be maximized.
We conduct extensive trace-driven simulations, which show that
the proposed heuristic algorithms: (i) achieve close-to-optimal
solutions, (ii) scale to large cloud gaming services with 3000+
servers and 1000+ gamers, and (iii) outperform the state-of-the-
art placement heuristic, e.g., by up to 3.5 times in terms of net
profits. We also present a prototype system and testbed using
off-the-shelf virtualization software.

I. INTRODUCTION

Cloud gaming providers, such as Gaikai, Ubitus, and OnLive,
offer on-demand gaming services to many gamers, who play
games via thin clients running on their desktops, laptops,
smartphones, and TV set-top boxes. Cloud gaming services are
very attractive to gamers and developers [26], and a market
study projects that the cloud gaming market is going to grow
to 8 billion US dollars by 2017 [11]. In fact, some cloud
gaming startups, such as Gaikai, were recently acquired by
leading game developers, such as SONY [8], which shows
that the tremendous market potential of cloud gaming has been
appreciated by the game industry.

Offering cloud gaming services in a commercially-viable
way is, however, very challenging as demonstrated by OnLive’s
financial difficulty [25]. The main challenge for cloud gaming
providers is to find the best tradeoff between two contradicting
objectives: reducing the hardware investment and increasing

the gaming Quality-of-Experience (QoE). Satisfactory gaming
QoE demands for high-end hardware, which may incur huge
financial burden; meanwhile, using low-end hardware leads to
less pleasing gaming QoE, which may drive gamers away from
the cloud gaming services. Moreover, different game genres
impose diverse hardware requirements, which may result in
insufficient or wasted hardware resources if server resources
are not well planned. For example, the servers configured for
cutting-edge 3D first person shooter games may be an overkill
for 2D casual games. This diversity renders the dilemma of
finding the best tradeoff between profit and QoE even harder.

Server consolidation enables dynamic resource allocation
among game servers serving multiple gamers for better overall
performance and lower operational cost. In this paper, we study
the problem of efficiently consolidating multiple cloud gaming
servers on a physical machine using modern virtual machines
(VMs), such as VMware and VirtualBox, in order to provide
high gaming QoE in a cost-effective way, as illustrated in

Fig. 1. We consider the VM placement problem to maximize
the total profit while providing the just-good-enough QoE to
gamers. This problem is referred to as provider-centric problem
throughout this paper.
This optimization problem is similar to the virtual network

embedding problem [1], and is also NP-Complete. However, ex-
isting solutions for virtual embedding problem [1, 5, 6, 23, 30]
concentrate on computational/storage intensive applications,
without taking the real-time nature of cloud gaming (and other
highly interactive applications) into consideration. In particular,
unlike computational/storage intensive applications that demand
for high CPU/disk throughput, cloud games demand for high
QoE, in terms of, e.g., responsiveness, precision, and fair-
ness [4, 19, 27]. Hence, the existing virtual network embedding
algorithms do not work for cloud gaming providers. To the best
of our knowledge, this paper is the first attempt to tackle the
VM placement problem to maximize the cloud gaming QoE.
In particular, this paper makes the following contributions:

• We conduct extensive measurement studies using an open-
source cloud gaming platform, GamingAnywhere [15] on
two VM implementations to derive the game-dependent
parameters for QoE and performance models (Sec. III).

• We formulate and propose two algorithms for the provider-
centric VM placement problem (Sec. IV).

• We extend the provider-centric VM placement problem
into a gamer-centric problem for closed cloud gaming
services, e.g., in hotels, Internet cafes, and amusement
parks, where the profit is not a concern and the overall
gaming QoE needs to be maximized. We also propose two
algorithms to solve the gamer-centric problem (Sec. V).

• Our extensive simulations indicate that our efficient algo-
rithms: (i) result in close-to-optimal performance, as small
as 1% and 14% gaps, (ii) scale to large cloud gaming
services with 3000+ servers and 1000+ gamers, and (iii)
outperform a state-of-the-art algorithm, e.g., up to 3.5
times of net profit increase (Sec. VI).

II. RELATED WORK

Marzolla et al. [22] utilize the live migration technology
to move the VMs away from the the lightly loaded physical
servers and thus the empty servers can be switched to low-
power mode. Ferreto et al. [12] create a dynamic server consol-
idation algorithm with migration control and avoid unnecessary
migrations to reduce the number of powerd on servers and
migration cost. Chen et al. [3] develop a migration algo-
rithm that considers the historical migration for saving energy.
Speitkamp and Bichler [28] present a heuristic solution which
approximates the optimal solution by not only considering
the cost but also determining whether the problem size can
be optimally solved. Nathuji et al. [31] create a performance
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Fig. 1. The architecture of the considered cloud gaming service platform,
where GS denotes cloud gaming server.

interference model and classify the applications into different
resource bounds using historical data. The applications are then
consolidated on physical servers for better Quality of Service
(QoS). Zhu and Tung [24] also consider the interference and
implement a system to determine the placement of VMs to
avoid the interference and meet the desired QoS values. None of
the aforementioned studies take QoE levels into consideration.

The benefits of game server consolidation have been studied
for certain game genres. For example, Lee and Chen [18]
address the server consolidation problem for Massively Mul-
tiplayer Online Role-Playing Game (MMORPG). In contrast,
we consider cloud gaming that streams high-quality real-time
videos to gamers, while MMORPG servers only send low
bitrate status updates. Moreover, we explicitly optimize gaming
QoE in this paper.

GamingAnywhere (GA) [15] is an open cloud gaming sys-
tem, which provides a platform for experimenting different
optimization techniques for cloud gaming. We use GA to
derive the performance and QoS models for different games
on different VMs, and to develop VM placement algorithms.

III. MEASUREMENT STUDIES

We conduct measurement studies to model the implications
of consolidating multiple cloud gaming servers on a physical
machine. We set up the GA server [15] on VMware workstation
9 and VirtualBox 4.2.6. The GA client runs on another machine
without VMs. The two machines running GA server and client
are Windows 7, connected via a wired network, and they are
equipped with Intel i7 3.4 GHz CPU and 24 GB memory, and
Intel i5 2.8 GHz CPU and 4 GB memory, respectively. We
choose three games in different genres: Limbo, Sudden Strike:
Normandy (Normandy), and Police Supercars Racing (PSR),
and measure various performance metrics over 5-min game
sessions with different configurations. We consider four metrics
relevant to the VM placement problem: (i) CPU utilization: the
average CPU load measured on the physical server, (ii) GPU
utilization: the average GPU load measured on the physical
server, (iii) frame rate: the average number of frames streamed
per second, and (iv) processing delay: the average time for the
GA server to receive, render, capture, encode, and transmit a
frame [2].

We first compare the performance of GA running on the
host OS and that running on a single VM with all available
resources allocated to it. Fig. 2 gives some sample results,
which reveals that: (i) VMs lead to nontrivial overhead, (ii)
different VMs result in different overhead, and (iii) different
games incur different workloads that may have distinct perfor-
mance implications on different VMs. Hence, more extensive
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Fig. 2. Virtualization overhead depends on game and VM implementations.

measurements are required to derive the prediction model of
GA performance in each game/VM pair.
Next, we vary the number of VMs on the server, while

equally dividing the 8 CPU cores among all VMs. In particular,
we conduct the measurements with 1, 2, 4, and 8 VMs. We plot
the sample results from Limbo in Fig. 3. This figure reveals that
the CPU utilization, GPU utilization, frame rate, and processing
delay can be modeled as sigmoid functions of the number of
VMs on a physical server, which are also plotted in Fig. 3 as
the curves. This figure, along with the R-square values, given in
our technical report [14], demonstrate that our models closely
follow the measurement results. The precise fitted sigmoid
models are detailed in Sec. IV-B, and the empirically derived
parameters are used in Secs. VI and VII. We acknowledge that
the model parameters depend not only on the pairs of game/VM
but also on game server specifications and operating systems.
This however is not a serious concern, as cloud gaming service
providers are likely to build data centers with one or very few
types of machines, which can be profiled offline beforehand.

IV. VM PLACEMENT PROBLEM AND SOLUTION

A. System Overview

Fig. 1 illustrates the system architecture of a cloud gaming
platform, which consists of S physical servers, P gamers, and
a broker. Each physical server hosts several VMs, while every
VM runs a game and a game server (GS). Several physical
servers are mounted on a rack, and multiple racks are connected
to an aggregation switch. The aggregation switches are then
connected to the Internet via a core switch. Physical servers
are distributed in data centers at diverse locations. The gamers
run game clients on desktops, laptops, mobile devices, and set-
top boxes to access the cloud gaming platform via the Internet.
The broker is the core of our proposal. The broker consists

of a resource monitor and implements the VM placement
algorithm. It is responsible to: (i) monitor the server workload
and network conditions, and (ii) place the VMs of individual
gamers on physical servers to achieve the tradeoff between QoE
and cost that is most suitable to the cloud gaming service. The
games may have diverse resource requirements, including CPU,
GPU, and memory [7], while the paths between gamers and
their associated servers have heterogeneous network resources,
such as latency and bandwidth. Moreover, gamers can tolerate
different QoE levels for different game genres [21]. Last, we
note that the broker can be a virtual service running on a server
or a server farm for higher scalability.

B. Notations and Models

We study the VM placement problem, in which the VM
placement decisions affect network delay, processing delay, and
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Fig. 3. Measurement results for CPU utilization, GPU utilization, frame rate, and processing delay. Sample results from Limbo.

operational cost. We write the network delay between server s
(1 ≤ s ≤ S) and gamer p (1 ≤ p ≤ P ) as es,p which is
essentially the round-trip time between them. The es,p values
may be measured by various network diagnostic tools, such as
Ping and King [13]. Let p be the game played by a specific
gamer, we use fp(v) and dp(v) to denote the frame rate and
processing delay when serving p with a server running v VMs.
Fig. 3 reveals that sigmoid functions can model fp(v) and
dp(v) well, and we write them as fp(v) =

αp,1

1+e
−αp,2v+αp,3

and dp(v) =
βp,1

1+e
−βp,2v+βp,3

, where αp,1–αp,3 and βp,1–βp,3

are model parameters derived from regression. Furthermore, we
use us(v) and zs(v) to model the CPU and GPU utilizations
of server s running v VMs. Fig. 3 shows that us(v) and zs(v)
can also be written as a sigmoid function u(v) = δ1

1+e−δ2v+δ3

and z(v) = ζ1
1+e−ζ2v+ζ3

, where δ1–δ3 and ζ1–ζ3 are the model

parameters. We denote gp as the hourly fee paid by gamer p. We
let ws(v) = cs(u(v)+z(v)) be the operational cost of imposing
CPU and GPU utilization u(v) and z(v) on s, where cs is a
cost term consisting of various components, such as electricity,
maintenance, and depreciation. Moreover, we allocate Gv GB
memory to each VM, whereas each physical server is equipped
with Gp GB memory. Last, we consider GA servers to stream
at B kbps. We let W be the number of data centers, and
use Sw (1 ≤ w ≤ W ) to denote the set of servers in data
center w. We let Bw be the uplink bandwidth of data center
w (1 ≤ w ≤ W ). Our bandwidth model is general, as the
mapping between servers and data centers is flexible: if the
last-mile links are the bottleneck, we may create a virtual data
center for each server, such that |Sw| = 1, ∀w.

We next model the QoE of cloud gaming. Recent stud-
ies [19, 27] suggest that the response time of user inputs

directly affects QoE levels. The response time d̃s,p(v) is the
sum of processing delay, network delay, and playout delay. The
playout delay is the time duration of receiving, decoding, and
displaying a frame at the client. Since playout delay is not
affected by VM placements, we do not include it in our model

for brevity, and write d̃s,p(v) = dp(v) + es,p. We generalize
the QoE models in [19, 27] to be a function of both response

time and frame rate. More specifically, we let qp(fp, d̃s,p) be
the gaming QoE degradation observed by gamer g with frame

rate fp and response time d̃s,p. Inspired by the linear QoE

model in [19], we write qp(fp, d̃s,p) = γp,1fp+γp,2d̃s,p, where
γp,1 and γp,2 are model parameters that can be derived by the
methodology presented in [19]. Last, we use Qp to denote the
maximal tolerable QoE degradation of gamer p.

C. Problem Formulation

We let xs,p ∈ {0, 1} (1 ≤ p ≤ P, 1 ≤ s ≤ S) be the decision
variables, where xs,p = 1 if and only if gamer p is served by a
VM on server s. With the notations defined above, we formulate
the provider-centric problem as:

max

P∑

p=1

S∑

s=1

xs,pgp −

S∑

s=1

cs(
δ1

1 + e−δ2vs+δ3
+

ζ1

1 + e−ζ2vs+ζ3
)

(1)

s.t. fp = αp,1/(1 + e
−αp,2

∑S
s=1(xs,pvs)+αp,3), ∀p; (2)

d̃p =
βp,1

1 + e−βp,2
∑

S
s=1

(xs,pvs)+βp,3
+

S∑

s=1

es,pxs,p, ∀p; (3)

vs =
∑P

p=1 xs,p, ∀s; (4)

1 =
∑S

s=1 xs,p, ∀p; (5)

Qp ≥ γp,1fp + γp,2d̃p, ∀p; (6)

Bw ≥ B
∑

s∈Sw

∑P

p=1 xs,p, ∀w; (7)

Gp ≥ Gv

∑P

p=1 xs,p, ∀s; (8)

xs,p ∈ {0, 1}, ∀1 ≤ s ≤ S, 1 ≤ p ≤ P ; (9)

The objective function in Eq. (1) maximizes the provider’s
net profit, i.e., the difference between the collected fee and
cost. Eqs. (2) and (3) derive the frame rate and response
time as intermediate variables. In Eq. (4), we define another
intermediate variable vs to keep track of VMs on each server
s, and we evenly allocate the cores among all VMs on a server.
Eq. (5) ensures that each gamer is served by a single server.
Eq. (6) makes sure that the gaming QoE degradation is lower
than the user-specified maximal tolerant level. Eqs. (7) and (8)
impose bandwidth and memory constraints on each data center
and sever, respectively. In summary, the formulation maximizes
the provider’s profit while serving each gamer with a (user-
specified) just-good-enough QoE level.

D. Proposed Algorithm

The provider-centric formulation in Eqs. (1)–(9) can be op-
timally solved using optimization solvers, such as CPLEX [9].
We refer to the solver-based algorithm as OPT. The OPT
algorithm gives optimal solutions at the expense of exponential
time complexity. Therefore, we use OPT for benchmarking and
propose an efficient heuristic algorithm, called Quality-Driven
Heuristic (QDH), below.
The QDH algorithm is built upon an intuition: it is desirable

to consolidate more VMs on a server as long as the user-
specified maximal tolerate QoE degradation is not exceed.
The pseudocode of QDH is given in [14] due to the space
limitations. For each gamer, the algorithm first sorts all servers



on the network latency to that gamer. It then iterates through
the servers in the ascending order and creates a VM for the
gamer on the first server that can support this gamer without
violating constraints in Eqs. (2)–(9). It is clear that the QDH
algorithm runs in polynomial time.

V. ALTERNATIVE FORMULATION AND ALGORITHMS FOR

CLOSED SYSTEMS

The provider-centric problem presented in Sec. IV is suitable
to public cloud gaming services. For closed cloud gaming
services, e.g., in hotels, Internet cafes, and amusement parks,
maximizing the overall QoE is more important as the bandwidth
is dedicated to cloud gaming. Therefore, we present the gamer-
centric formulation and algorithms in this section. We start from
the provider-centric formulation in Eqs. (1)–(9), and we first
replace the objective function in Eq. (1) with:

min
[
∑P

p=1
γp,1fp +

∑P
p=1

γp,2d̃p
]

, (10)
which minimizes the total QoE degradation. In particular, the
QoE degradation is reduced when fp increases or dp decreases
as the empirically derived γp,1 is negative and γp,2 is positive.
Next, we remove the constraints in Eq. (6) as the new objective
function has taken the QoE into consideration. This yields the
gamer-centric problem formulation. We develop a solver-based
algorithm for the gamer-centric formulation, which is referred
to as OPT′.
We also propose an alternative QDH for the gamer-centric

problem, which is called QDH′. Its pseudocode is also given in
[14]. For each gamer, the algorithm first computes its quality
degradation levels on individual servers. It sorts the servers on
the quality degradation if serving that gamer using individual
servers. Then, the algorithm iterates through the servers and
creates a VM for the gamer on the first server that can support
the gamer without violating any constraints in Eqs. (2)–(5),
(7)–(8). QDH′ runs in polynomial time.

VI. TRACE-DRIVEN SIMULATIONS

A. Setup

We have built a simulator for the VM placement problem
using a mixture of C/C++, Java, CPLEX, and Matlab. We
have implemented the QDH/QDH′ and OPT/OPT′ algorithms
in our simulator. For comparisons, we have also implemented
a VM placement algorithm that places each VM on a random
gamer server that is not fully loaded and in the data center
geographically closest to the gamer. This baseline algorithm is
referred to as Location Based Placement (LBP) algorithm. We
collect gamer and server IP addresses and the latency between
each gamer/server IP pair in order to drive our simulator. For
servers, we use DigSitesValue [10] to obtain the IP addresses
of OnLive data centers in Virginia, California, and Texas. For
gamers, we develop a BitTorrent crawler using libtorrent [20]
to collect peer IP addresses and then use them as gamer IP
addresses. Since OnLive only hosts game servers in the US, we
filter out non-US gamer IP addresses using ip2c [16]. We ran
our crawler on August 13, 2013 with 4494 torrents downloaded
from IsoHunt [17], which gave us 22395 IP addresses and
5875 US IP addresses. Next, we measure the network latencies
among gamer/server IP pairs using King [13], since we have
no control over neither end systems. We drop the IP addresses
without complete latency results to all servers, which leads to
412 gamer IP addresses.

We conduct a three-day simulation for each scenario using
different algorithms. The gamers arrive at the broker following
a Poisson process with a mean time interval of 4 minutes and
each gamer plays for a duration uniformly chosen from {300,
600, 1200, 2400, 4800} minutes. In addition to the synthetic
gamer arrival traces, we also employ real World of Warcraft
(WoW) traces [29] in our simulations. Each gamer plays a game
randomly chosen from Limbo, PSR, and Normandy. We also
vary the number of servers S ∈ {192, 384, 768, 1536, 3072}.
During each simulation, we run the scheduling algorithm once
every minute and we report the mean performance results
among all gamers, and 95% confidence intervals whenever
applicable. If not otherwise specified, we set S = 192,
γp,1 = −0.1, γp,2 = 0.1, gp = 1, and cs = 1. We conduct
all the simulations on an Intel i7 3.4 GHz PC. We consider the
following performance metrics:

• Net profit. The total provider profit in every minute.
• Quality of Experience. The gaming QoE normalized in the

range of [0%, 100%].
• Running time. The time of executing each algorithm.
• Number of used servers. The number of servers that serve

at least one gamer.

B. Sample Results

Due to the space limitations, more simulation results are
given in [14].
Necessity of QDH/QDH′. The OPT/OPT′ algorithms can

only solve small problems with less than 6 servers and 10
gamers. Moreover, the proposed QDH/QDH′ algorithms result
in close-to-optimal performance, up to 86% and 99% in the
provider- and gamer-centric scenarios, respectively. Therefore,
we no longer consider OPT/OPT′ in the rest of this paper.

Performance of QDH/QDH′. We plot the provider-centric
results in Fig. 4(a), which shows that QDH significantly out-
performs LBP: up to 3 times difference. This can be explained
by Fig. 4(b), which shows that QDH turns on fewer servers to
achieve higher net profits. We plot the gamer-centric results
in Fig. 5, which reveals that QDH′ constantly outperforms
LBP: up to 5% QoE gap. Moreover, the confidence intervals
show that QDH′ leads to more consistent QoE levels among
individual gamers, achieving better fairness. Fig. 6 plots the
aggregate QoE of three games, which shows that both QDH′

and LBP are relatively fair to different game genres, while QDH
maximizes the net profits by devoting more resources to less
complicated games.
Performance results from WoW traces. In the following,

we report results from the WoW traces. We plot the provider-
centric results in Fig. 7(a), which shows that while QDH
outperforms LBP in the first half of the simulation (by up to
3.5 times), LBP performs better in the second half. This can be
explained by Figs. 7(b) and 7(c), which reveal that QDH turns
on more servers at meet the just-good-enough QoE level. More
specifically, Fig. 7(c) shows that LBP fails to deliver good QoE
levels: as low as 0% is observed. This figure also shows that
QDH′ always achieves 80+% QoE levels.
Scalability. We plot the running time in Fig. 8, which shows

the QDH/QDH′ algorithms terminate in real time: < 250 ms.
We then increase the number of servers S. We found that it
takes QDH/QDH′ at most 7.15 s to solve a VM placement
problem with more than three thousand servers and a thousand
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Fig. 4. Provider-centric results with synthetic traces: (a) net profits and (b)
used servers.
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Fig. 9. Impacts of number of gamers on: (a) net profits and (b) QoE levels.

of concurrent gamers. This is relatively short compared to the
initialization time of modern computer games.

Number of gamers. The number of gamers in WoW traces is
varying in time, and we present two scatter plots in Figs. 9(a)
and 9(b) to study the relation between the performance and
number of gamers. We made two observations on these figures.
First, more gamers lead to higher profits and lower QoE levels,
and QDH/QDH′ successfully achieve their design objectives.
Second, LBP only works with few gamers, as illustrated in
Fig. 9(b).

VII. SYSTEM IMPLEMENTATION AND TESTBED

A. Prototype Implementation

We have implemented a complete cloud gaming system
consisting of a broker, physical servers, and GA servers/clients,
as illustrated in Fig. 10. We adopt VMWare ESXi 5.1 as
the virtualization software on physical servers. We employ
VMware vCenter 5.1 as the platform for our broker, which
is comprised of Single-Sign-On for user authentication and
Inventory Service for managing/monitoring the VMs on ESXi
servers. We integrate the GA client and server with VMware
ESXi and vCenter. In particular, the GA client provides in-
terface for gamers to send their accounts and passwords to the
broker. Upon being authenticated, the GA client sends the user-

specified game to the broker, and the broker determines where
to create a new VM for that game based on the status of all
physical servers and networks. The broker then instructs the
chosen physical server to launch a VM and send the VM’s IP
address to the GA client. Last, the GA client connects to the
GA server, and instructs the GA server to run the user-specified
game. This starts a new GA game session.

B. Testbed and Practical Concerns.

We set up a testbed using the prototype system in our lab,
which is shown in Fig. 11. The testbed contains an i7 3.2
GHz broker with the management web page, two i5 3.5 GHz
physical servers, and two i5 client computers. The broker,
physical servers and client computers are connected via Gigabit
Ethernet. We measure the migration overhead, which is the
delay of moving an ongoing session from a physical server to
another one. We found that the migration delays of 10, 20, and
40 GB VM images are about 3, 6, and 11 minutes.
Adaptive QDH/QDH′ algorithms. To cope with long mi-

gration delays, we propose adaptive variations of QDH/QDH′

algorithms, which only launch the VMs for new gamers, and
never migrate VMs running ongoing game sessions. We refer
to the new adaptive algorithms as QDHA and QDH′

A, and
we quantify their performance via simulating a large cloud
gaming system with 3072 servers using the WoW traces. We
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TABLE I
INITIAL RESULTS FROM A GPU ACCELERATED TESTBED

Mean Performance QDH QDH′ LBP
Frame Rate (fps) 26 33 19
Net Profit ($) 250 180 103
QoE (%) 80 85 77

found that the performance ratio of QDHA/QDH is > 89%
and QDH′

A/QDH
′ is > 99%, while the running time is reduced

by ∼500 times as illustrated in Fig. 12. Our evaluations show
that QDHA and QDH′

A perform very well with smaller time
complexity, and may support larger cloud gaming systems.

VIII. CONCLUSION AND FUTURE WORK

We studied the VM placement problems for maximizing: (i)
the total net profit for service providers while maintaining just-
good-enough gaming QoE, and (ii) the overall gaming QoE
for gamers. The former problem is more suitable for public
cloud gaming systems, while the later problem is more suitable
for closed systems. We conducted extensive experiments using
a real cloud gaming system [15], and two VMs to derive
various system models. We formulated the two problems as
optimization problems, and proposed optimal and efficient al-
gorithms to solve them. Via extensive trace-driven simulations,
we demonstrate that: (i) the efficient algorithms achieve up to
99% (gamer-centric) and 86% (provider-centric) performance
compared to the optimal algorithms, while the optimal algo-
rithms do not scale to a large number of game servers and
gamers, (ii) the efficient algorithms constantly outperform the
state-of-the-art algorithm, e.g., up to 3.5 times in net profits,
and (iii) the efficient algorithms terminate in < 7.15 s on a PC
for a system with 3000+ servers and 1000+ gamers.

This work can be extended in several directions. For ex-
ample, we may develop more comprehensive system models,
which consider other resource types and heterogeneous servers,
and support online parameter adaptation. Another potential
extension is to leverage the modern virtualization software the
comes with some GPU supports. Our preliminary experiments
with 10 gamers and 8 physical servers equipped with NVidia
Quadro 6000 cards confirm the merits of QDH/QDH′, which
are summarized in Table I. More rigorous experiments on the
GPU accelerated testbed are among our future tasks.
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