Network Game Design:

User Identification based on Game-Play Activity Patterns

Chun-Yang Chen, Academia Sinica
Li-Wen Hong, Academia Sinica
Motivation

- **Password-based User Identity**

 - **Vulnerability**
 - *Account hijacking (Identity Theft)*
 - Severity & prevalence
 - No general solution until the victim appears
 - *Account sharing*
 - Increase the difficulty of demographical studies of game
User Identity: Current Solutions

- Digital signature
 - Smart card

- Biometrical signature
 - fingerprint
 - voice
 - keystroke
Our Solution

A novel biometric:

Game-Play Activity Patterns
Outline

- Motivation
- Data Collection
- Player Activity Analysis
- Proposed Scheme
- Performance Evaluation
- Contribution & Future Work
Observation

More Regular

More Unpredictable

Motivation Data Collection Player Activity Analysis Proposed Schemes …
Data Collection

- A MMORPG -- Angel’s Love
 - A commercial game in Taiwan
 - 40 thousands of players online

- The player activity logs we use
 - Trace period of 3 days
 - 287 randomly chosen accounts
 - Remove logs shorter than 200 minutes
Definitions

- **Active period**

 An active period of a game character is defined as a time interval \((t_1, t_2)\) in which the character *continuously* moves, with a tolerance of discontinuity up to 1 second.

- **Idle period**

 An idle period of a game character is defined as a time interval \((t_1, t_2)\) in which the character has *no movements*, where \(t_2 - t_1 \geq 1\) second.
Data Summary

<table>
<thead>
<tr>
<th>Player # : 287</th>
<th>Data Length</th>
<th>Activity Rate</th>
<th>Active Period</th>
<th>Idle Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>7 hr</td>
<td>0.35 cycle/min</td>
<td>3 sec</td>
<td>7 sec</td>
</tr>
<tr>
<td>50%</td>
<td>51 hr</td>
<td>2.28 cycle/min</td>
<td>6 sec</td>
<td>18 sec</td>
</tr>
<tr>
<td>95%</td>
<td>67 hr</td>
<td>5.12 cycle/min</td>
<td>9 sec</td>
<td>181 sec</td>
</tr>
</tbody>
</table>

Data Collection **Player Activity Analysis** **Proposed Schemes** **Performance Evaluation** …
Distribution of Active / Idle Period

Data Collection Player Activity Analysis Proposed Schemes Performance Evaluation …
Idle time is much more diverse than active time

Data Collection Player Activity Analysis Proposed Schemes Performance Evaluation ...
Players’ active/idle patterns can be very different candidate features for user identification.
Why choosing idle time rather than active time

- Idle time distribution captures more variability
- Idle time process has smaller degree of autocorrelations

Data Collection Player Activity Analysis Proposed Schemes Performance Evaluation …
Idle Time Distribution of Random Players

Data Collection Player Activity Analysis Proposed Schemes Performance Evaluation …
KL Distances

- **ITD**: Idle time distribution
- **RET**: Relative Entropy Test
 - relative entropy between two ITDs
 - based on the KL distance
- **KL distance**: Kullback-Leibler distance
 - \[D_{KL}(P \parallel Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)} \]
 - \[D_{SKL}(P \parallel Q) = D_{SKL}(Q \parallel P) = D_{KL}(P \parallel Q) + D_{KL}(Q \parallel P) \]
KL distances of Players

Player Activity Analysis Proposed Schemes Performance Evaluation …
Identification Scheme: Consistency Test

- Perform consistency test
 - KLD: distribution of KL distance
 - 2 KLDs for each player
 - KLDs are tested by two-sided Wilcoxon test
Identification Scheme:
Discriminability Test

- Perform discriminability test
 - $KLD_{i,j}$: distribution of KL distances between n_i ITDs of player i & n_j ITDs of player j
 - KLDs are tested by one-sided Wilcoxon test
Factor Consideration

Consideration: effect of the detection time & the history size

- T_{rec}: how long the player history kept in database (in minutes)

- T_{obs}: the detection time once the player log in (in minutes)
Evaluation Result

Proposed Schemes Performance Evaluation Contribution & Future Work
Performance Evaluation

- **Effect of** T_{rec}
 - mean of activity cycles is one minute $\Rightarrow T_{\text{rec}} = \text{idle times}$
 - assuming one million user accounts, $T_{\text{rec}} = 200$ minutes, each idle time uses 4 bytes \Rightarrow storage space = 800 MB

- **Effect of** T_{obs}
 - assuming 10,000 players are online, $T_{\text{obs}} = 20$ minutes
 \Rightarrow main memory = 0.8 MB
Contribution & Future Work

Contribution:

Propose the **RET scheme** for user identification from the aspect of **idle time**.

- With a 20-minute detection time period given a 200-minute history size ➔ achieve **higher than 90% accuracy**.

Future Plan

- Cut down the detection time
- Utilizing more aspects of game-play activities.
- Analyzing from the way users control the character.
Thank you!

Chun-Yang Chen
Li-Wen Hong