Network Game Design:

Hints and Implications of
Player Interaction

Kuan-Ta Chen, Academia Sinica

Chin-Laung Lei, National Taiwan University
User behavior is a key factor of how well a network system performs (and how should a system be designed)

Example: Virtual World Partitioning Problem

If game players tend to be clustered in the game world
⇒ dynamic and adaptive partitioning of the game world would be required.
Motivation

Drawing Design Implications from Players’ Interaction for Designing More Responsive & Scalable Online Games
What We’ve Done

1. **Collecting** game traces (packet-level)

2. **Inferring** user interaction from game traces
 - Who are interacting?
 - Where are the players?
 - How do they interact? (stay together or team up)

3. Studying the **implications** of user interaction on game design
Talk Outline

- The question

- Trace collection
 - Deriving user interaction
 - Analysis of user interaction (and its implications)
 - Conclusion
Game Studied -- ShenZhou Online
Game Trace Collection

<table>
<thead>
<tr>
<th>trace</th>
<th>conn. #</th>
<th>packets (in/out/both)</th>
<th>bytes (in/out/both)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>57,945</td>
<td>342M / 353M / 695M</td>
<td>4.7TB / 27.3TB / 32.0TB</td>
</tr>
<tr>
<td>N2</td>
<td>54,424</td>
<td>325M / 336M / 661M</td>
<td>4.7TB / 21.7TB / 26.5TB</td>
</tr>
</tbody>
</table>
Why We Use Packet-Level Traces?

Packet-level traces are much easier to obtain

- no modification to game servers is required
- recording packet traces does not increase the workload of game servers

Player behavior inferred naturally connects to network-level factors, e.g., IP addresses and network latency
Extraction of Player Interaction

We would like to know …
- whether any two players are at the same place
- whether any two players are teammates

For each player (game session), we have …
- a client packet arrival process
- a server packet arrival process

We’ve proposed an algorithm
- based on the correlations between the packet arrival processes
Server packet rates imply the degree of PC/NPC activities around the avatar.
Example: Four Teammates

- Client packet rates imply the **degree of game play activities** of the avatar.
Talk Progress

- The question
- Trace collection
- Deriving user interaction
- Analysis of user interaction (and its implications)
 - player dispersion
 - network proximity
 - social interaction
- Conclusion
Dispersion of Players

The dispersion of players in the game world:
- well modeled by Zipf distributions
- 30% of players gather in the top 1% of places

Implications:
- static and fixed-size partitioning of the game world might be insufficient
- dynamic and adaptive partitioning algorithms should be used
Peer-to-Peer Games

- Reducing server load \Rightarrow more scalable
- Faster response time
- Audio/video communications

Client-server architecture Peer-to-peer architecture
How to construct overlay networks?

Goal: to optimize the overall transmission latency

i.e., how to pass information between the peer nodes?
Overlay Construction Alternatives

Design 1:
by network distance

(optimize network latency)

Design 2:
by virtual world distance

(connect frequently contact nodes)

Which design leads to more efficient overlays for online games?
Similarity between The Two Approaches?

Network Topology View

Game World View

Network Topology View

two approaches lead to different overlays

two approaches lead to similar overlays

either approach is OK
Correspondence between
Network Distance and Virtual World Distance

Observation:
- Players who are neighbors or teammates tend to be closer to each other in network topology.

Evidence:
1. Players who have interaction tend to have closer IP addresses.
2. Players who have interaction tend to have shorter network latencies (between them).

Legend:
- irrelevant players
- neighbors
- teammates
Implications of Network Proximity

For client-server architecture
- improves the **fairness** of game playing, as interacting players tend to have similar latencies to their servers

For peer-to-peer architecture
- message delivery between the hosts of interacting players is **faster**
- opportunities for **optimizing** network latency between interacting players
Effect of Network/Physical Distance

Observation (for a group of players):
- network distance ↓ team play time ↑

Explanations and implications:
- real-life relationship carries over into the game;
- real-life interaction plays a key role in game play;
- enriching in-game communication encourages players to be more involved in team play.
Effect of Social Interaction

Observation:
- degree of social interaction \uparrow game play time \uparrow
- team size \uparrow team play time \uparrow

Explanation:
- due to the enjoyment derived from interaction and social bonds
- a game could be made stickier by encouraging the formation of large groups

Conclusion

Packet-level traces

- easier to obtain
- feasible to extract user interaction

Findings summarized

- partitioning of the virtual world should be *dynamic*
- *network proximity* of interacting game players
- games could be made more sticky by supporting *in-game communication* and encouraging team playing
Thank You!

Kuan-Ta Chen

http://www.iis.sinica.edu.tw/~ktchen